# **Profikatalog 2023**

# Verbinder für Holzkonstruktionen

C-DE-2023 strongtie.de





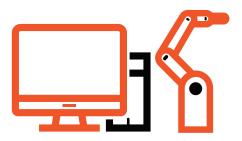
### Härter als Stahl



Unsere Produkte überdauern die Zeit.
Genau wie unsere Beziehungen. Seit über 60 Jahren entwickelt Simpson Strong-Tie® Holzverbinder, die auch unter den härtesten Bedingungen einsatzfähig bleiben und Sie dabei unterstützen sichere und stabile Bauwerke und Holzkonstruktionen zu bauen. Mit mehr als 1.000 Produktlösungen sind wir stolz darauf, das umfangreichste Holzverbindersortiment in Europa anbieten zu können.

### **CE & Garantien**




Unsere Produkte erfüllen die Vorgaben der Bauproduktenverordnung und werden, soweit erforderlich, auf die Erfüllung der Anforderungen für eine CE-Kennzeichnung geprüft.

# **Technischer Support**



Unser technisches Support-Team steht Ihnen zur Beantwortung Ihrer Fragen und für fundierte Verarbeitungshinweise zur Verfügung – vom idealen Produkt für Ihre Anwendung bis hin zu den besten Montagemöglichkeiten.

# **Design und Produktion**



Wir arbeiten regelmäßig mit Planern und Verarbeitern zusammen, um unser Angebot an strukturellen Verbindungslösungen weiterzuentwickeln und um den sich ständig ändernden Anforderungen gerecht zu werden. Einfache Installationen, Leistungsmerkmale und eine hohe Lebensdauer sind die Grundprinzipien unseres Designs.

# Lager und Lieferung



Von unserem Vertriebszentrum in Bad Nauheim aus tun wir alles, um sicherzustellen, dass Sie Ihre Lieferung pünktlich und vollständig zu Ihnen ans Lager oder direkt auf die Baustelle erhalten.

# Forschung und Entwicklung



Wir investieren kontinuierlich in Forschung und Produktentwicklung, um sicherzustellen, dass unsere Produktlösungen effizient und anwenderfreundlich sind sowie den Anforderungen von Bauprofis entsprechen. Unser technisches Team erarbeitet, entwickelt und testet regelmäßig neue Produktlösungen.

### Pläne und Zeichnungen



Uns ist bewusst, dass Architekten,
Planer und Verarbeiter sehr detaillierte technische Informationen
zu unseren Produkten benötigen. Deshalb stellen wir
Zeichnungen und technische Informationen kostenlos
auf unserer Website zur Verfügung.

### Software



Wir bieten kostenlose Softwarelösungen an, die Ihnen bei der Auswahl des richtigen Holzverbinders oder der richtigen Befestigung helfen.

# Marketing-Support



Unser Marketing-Team gibt Ihnen eine breite Palette von Produktabbildungen und -ressourcen an die Hand. Auf unserer Website stehen Ihnen kostenlos Produktdaten, Kataloge, Broschüren, Flyer sowie Anwendervideos zur Verfügung.

### Individuelle Produktion



Jedes Bauprojekt bringt seine eigenen
Herausforderungen mit sich – manchmal unerwartet und oft
einzigartig. Unsere Konstruktions- und Produktionsteams bieten
einen Fertigungsservice für individuelle Verbinder basierend auf
den von Ihnen bereitgestellten Plänen an.

# Qualitätskontrollen



Unsere Produkte und Aktivitäten zeichnen sich durch Qualität und Innovation aus. Unsere "No Equal" – Holzverbinder werden aus Stählen bester Qualität hergestellt und strengen Qualitätsprüfungen unterzogen, um sicherzustellen, dass sie die Sicherheitsbestimmungen erfüllen und die Bedürfnisse und Erwartungen unserer Kunden übertreffen.

# Kontakt



Dies ist unsere "No Equal"-Verpflichtung. Der Unterschied zwischen uns und allen anderen.



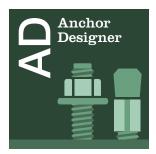






strongtie.de




# Diese Softwarelösungen helfen Ihnen bei der Wahl der richtigen Verbinder und Dübelverankerungen





# Connector Selector®

Die Connector Selector<sup>®</sup> Software von Simpson Strong-Tie<sup>®</sup> ist ein Programm, mit dem eine Verbinderauswahl inklusive Bemessungsausdruck getroffen werden kann, unabhängig davon, in welchem europäischen Land Sie gerade tätig sind.

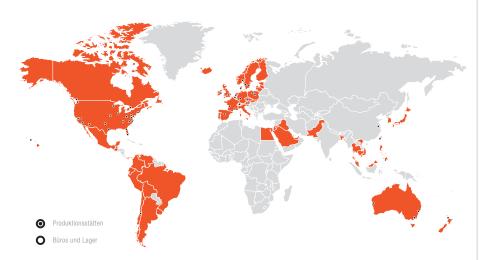


# Anchor Designer™

Das Ankerbemessungsprogramm Anchor Designer™ bietet eine anwenderfreundliche und professionelle Berechnung von Dübelverankerungen im gerissenen und ungerissenen Beton. Die Berechnung erfolgt auf der Grundlage der Bemessungsverfahren für Verankerungen von Metall- und Verbunddübeln nach ETAG 001 - Anhang C sowie den EOTA Technical Reports: TR 029 (chemische Dübel), TR 020 (Brandeinwirkung) und TR 045 (seismische Einwirkungen) unter Beachtung der europäischen technischen Bewertungen (ETA) des jeweiligen Dübelsystems.



# Solid Wood®


In nur 4 Schritten durchsucht Solid Wood® eines der führenden europäischen Nagel- und Schraubensortimente, um eine Auswahl an Befestigungselementen zu bieten, die für Ihre Anforderungen geeignet sind, und erstellt einen vollständigen Bemessungsausdruck.

Die Softwarelösungen können kostenlos auf unserer Website **strongtie.de** heruntergeladen oder bequem unterwegs online auf Ihrem Smartphone genutzt werden.

# Über uns



Wir sind der weltweit führende Hersteller von Verbindern für tragende Holzkonstruktionen. Es ist unser Anspruch mit intelligenten Lösungsvorschlägen die Erstellung von Gebäuden auf höchstem technischen Niveau zu ermöglichen. Hierfür bieten wir bestmöglichen Service und exzellente technische Beratung. Ein Teil unserer Qualitätspolitik ist, möglichst viele Produkte in Europa herzustellen um kurze Wege zu gehen und ein hohes Maß an Qualität zu erreichen.





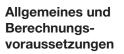
DIN EN ISO 9001 REG.-NR. Q1 0219005

# ISO 9001 Zertifizierung

Simpson Strong-Tie® GmbH in Bad Nauheim zählt zu den ISO 9001 zertifizierten Unternehmen. Die Qualitätsmanagement-Norm EN ISO 9001 ist national und international die meist verbreitete und bedeutendste Norm im Qualitätsmanagement. Sie bildet die Basis für den kontinuierlichen Verbesserungsprozess des unternehmensinternen Qualitätsmanagementsystems. Wir erfüllen somit die geprüften Prozess- und Qualitätsstandards, auf die Sie sich als unser Kunde immer verlassen können.



# Planen mit Simpson Strong-Tie®


Wir möchten Sie gezielt bei Ihren Projekten unterstützen und stellen Ihnen neben Kompetenz und Service produktspezifische Ausschreibungstexte für Ihre Bau-Ausschreibung zum kostenlosen Download zur Verfügung.





# ETA & CE-Kennzeichnung

Eine CE-Kennzeichnung ist verpflichtend für Bauprodukte, die innerhalb des europäischen Wirtschaftsraumes gehandelt werden. Auf das CE-Kennzeichen kann man auch außerhalb des europäischen Wirtschaftsraumes treffen. Dies ermöglicht das Erkennen eines derart zertifizierten Bauprodukts weltweit, mit dem Vorteil einer nachvollziehbaren Leistung auch für außereuropäische Anwender. Mit der CE-Kennzeichnung geht eine Herstellererklärung einher, dass dieses Bauprodukt den einschlägigen Normen, Regelwerken, wie z.B. ETAs, und Sicherheitsvorgaben entspricht. Diese Vorgaben sind gleichermaßen wichtig für Hersteller, Händler und Verarbeiter. Sie schaffen Klarheit und Transparenz.



Kapitel 0

Winkelverbinder

Kapitel 1 14 - 77

Balkenschuhe, verdeckte Verbinder

Kapitel 2 78 - 139

Universalverbinder, Sparrenpfettenanker Kapitel 3 140 - 153

Aussteifung, Lochbänder Kapitel 4 154 - 177

Lochbleche, Sparrenanschlüsse Kapitel 5 178 - 195

Gerberverbinder

Kapitel 6 196 - 205

Stützenfüße

Kapitel 7 206 - 243

HE- und Profilanker, Anschlussprofile Kapitel 8 244 - 249

Sonderteile

Kapitel 9 250 - 253

Rostfrei Produkte

Kapitel 10 254 - 269

Zuganker

Kapitel 11 270 - 289

**Haus und Garten** 

Kapitel 12 290 - 313

Verbindungsmittel

Kapitel 13 314 - 329

# Informationen - Allgemeines



# Metallische Korrosion, kurzer Leitfaden

Metallische Korrosion wird durch Kontakt mit unterschiedlichen Materialien verursacht, wie beispielsweise mit Meerwasser, verschiedene Düngemittel, Tausalze und mehr. Holzverbinder, Verbindungsmittel und Dübel aus Metall verlieren bei Korrosion ihre Tragfähigkeit. Korrosion kann auch durch Aerosole, aus Meeresluft, Chloriden aus Schwimmbecken, Tausalznebeln, usw. verursacht werden. Derartige Korrosion kann stattfinden, unabhängig davon ob sich die Metallteile im Freien, unter Dach oder im hinterlüfteten Bereich einer Fassade befinden.

Die Vielzahl der Möglichkeiten der Umgebungsbedingungen wie sie an einem Bauwerk auftreten können, macht es schwer in jedem Fall genau vorherzusagen, ob oder wann die Korrosion beginnt oder ein kritisches Niveau erreicht. Diese Unabwägbarkeiten fordern, dass Planer und Anwender sich der potenziellen Risiken bewusst sind und ein für den vorgesehenen Einsatzzweck geeignetes Produkt auswählen. Es ist ferner ratsam, von fachkundigen Personen regelmäßige Wartungen und Inspektionen durchführen zu lassen, insbesondere in hochkorrosionsbelasteten Bauwerken wie Schwimmbäder oder Salzlagerhallen, außenluftzugängigen Bereichen eines Bauwerks oder frei bewitterten Tragwerken.

Üblicherweise tritt Korrosion bei Außenanwendungen auf. Selbst Edelstähle können korrodieren. Das Auftreten einiger Korrosionsarten, z.B. Weißrost auf verzinkten Oberflächen bedeutet nicht, dass die Belastbarkeit beeinträchtigt ist oder ein Bauteilversagen droht, vielmehr ist es ein Zeichen dafür, dass die Verschleißschicht des zu schützenden Metalls verbraucht wird.

Wenn signifikante Korrosion, z.B. Rotrost vermutet wird oder auftritt, sollte eine qualifizierte Person die Bauteile, Verbindungsmittel und Verbinder prüfen. In manchen Fällen kann eine regelmäßige Reinigung (z.B. Abwaschen von Salzen) der betroffenen Bauteile sinnvoll sein. Taucht Rotrostkorrosion flächig an verzinkten Stählen auf, nimmt sie in den meisten Fällen zu und verursacht in einem fortgeschrittenen Stadium große Schäden. Aus vorverzinktem Bandstahl hergestellte Produkte können in den Nutzungsklassen 1 und 2 kurz nach dem Einbau rötlich-braun verfärbte Schnittflächen aufweisen. Diese sind bei Normalatmosphäre unbedenklich.

Aufgrund der Vielzahl an chemischen und physikalischen Umgebungsbedingungen ist es kaum möglich für jeden Fall eine Patentlösung zu präsentieren. Dieser Leitfaden kann nur einige grundlegende Kenntnisse zu diesem Thema vermitteln um Anwender für Korrosionsprobleme zu sensibilisieren. Es ist wichtig Abweichungen von den Standardfällen zu erkennen, Informationen einzuholen und ggf. einen Spezialisten zu Rate zu ziehen.

Idealerweise weisen Verbinder und Verbindungsmittel die gleiche Korrosionsschutzart auf, damit die Leistung der Verbindung über eine lange Zeit garantiert werden kann.

Bei Verwendung schutzmittelbehandelter Hölzer muss beachtet werden ob das jeweilige Mittel eine korrosionsfördernde Wirkung besitzt.

# Metallwerkstoffe

Tabelle 1

| Bezeichnung             | Norm           |
|-------------------------|----------------|
| S250GD                  | EN 10346:2015  |
| S235JR                  | EN 10025:2004  |
| \$350GD                 | EN 10346:2015  |
| S550GD                  | EN 10346:2015  |
| S355J0                  | EN 10025:2004  |
| S220JR                  | EN 10025:2004  |
| B550BR+AC               | EN 10080:2006  |
| DX51D                   | EN 10346:2015  |
| HC 340LA                | EN 10268:2009  |
| 1.4401/1.4404           | FN 10088:2014  |
| 1.4301                  | 214 10000.2014 |
| Aluminium EN AW-6082 T6 | EN 755:2016    |

Die geläufigsten Materialien aus denen Holzverbinder hergestellt werden sind in der Tabelle links aufgelistet.

# Produkte aus vorverzinkten Blechen

Die Mehrheit unserer Produkte wird aus feuerverzinkten Blechen S250GD+Z275 hergestellt, wobei Z275 eine Zinkschichtdicke von etwa 20 µm beschreibt.

### Produkte aus stückverzinktem Stahl

Diese Produkte werden überwiegend aus S235JR hergestellt und nach der Produktion gemäß EN ISO 1461 im Tauchverfahren stückverzinkt. Die Zinkschichtdicke beträgt hierbei üblicherweise 55  $\mu$ m.

### Produkte aus nichtrostendem Stahl

Die Mehrheit unserer Produkte aus nichtrostendem Stahl wird aus den Werkstoffen 1.4401 oder 1.4404 (ehemals A4) hergestellt, diese entsprechen der Korrosionswiderstandsklasse III gemäß EN1993-1-4 (A).

### Produkte aus Aluminium

Einige unserer Verbinder werden aus Aluminium mit der Bezeichnung EN AW-6082 T6 hergestellt.

# Informationen – Symbole





# Feuerverzinkung im Tauch-Schmelz Verfahren (Sendzimirverzinkung)

Die überwiegende Anzahl unserer Produkte weist diese Verzinkungsart mit der Spezifizierung "Z275" auf. Dies entspricht einer Zinkschichtdicke von etwa 20 µm. Das Vormaterial wird als Bandstahl durch ein heißes Zinkbad gezogen und erst anschließend bearbeitet. Diese sogenannte Sendzimirverzinkung gilt als Feuerverzinkung. Die Verwendung dieser Produkte ist in den Nutzungsklassen 1 und 2 in trockener Umgebung empfohlen (bei Blechdicken von 4 mm ausschließlich in der Nutzungsklasse 1).



HDG

55 µm

### Feuerverzinkt (Stückverzinkt)

Diese Produkte werden in ein 550 – 560°C heißes Schmelzzinkbad getaucht, es findet eine chemische Reaktion zwischen dem Stahl und dem Zink statt. Abhängig von der Zinkschichtdicke bietet die Stückverzinkung eine gute bis sehr gute Korrosionsbeständigkeit bei einer mäßigen Korrosionsbelastung.



### Aluminium

Ist beständig gegen geringe Korrosionsbelastungen, sollte jedoch nicht zusammen mit anderen Metallen verwendet werden, mit denen eine Gefahr von Kontaktkorrosion ausgeht. Bestimmte Aluminiumlegierungen können zusammen mit nichtrostenden Stählen mit den Werkstoffnummern 1.4401, 1.4404 und 1.4571 im Außenbereich verwendet werden, wenn eine Belastung durch Salze und Säuren ausgeschlossen ist.



# Niederlegierte nichtrostende Stähle, z.B. die Werkstoffnummer -1.4301 (ehemals A2)

Bei Edelstählen dieses Typs handelt es sich um austenitische Chrom-Nickel-Stähle. Diese nichtrostenden Stähle sind in der Regel nicht magnetisch. Das Material bietet eine sehr gute Korrosionsbeständigkeit und ist für den Einsatz in mäßig korrosiven Umgebungen geeignet.



# Höherlegierte nichtrostende Stähle, z.B. die Werkstoffnummern 1.4401, 1.4404...(ehemals A4)

Dieser Edelstahltyp ist ein austenitischer-Chrom-Nickel-Edelstahl mit 2–3% Molybdän. Das Material bietet einen sehr guten Korrosionsschutz, bei mäßiger bis mittlerer Korrosionsbelastung.



# Hochkorrosionsbeständiger nichtrostender Stahl, z.B. die Werkstoffnummer 1.4529

HCR Edelstähle haben einen höheren Anteil an Molybdän und sind sehr beständig gegen Loch- und Spannungsrisskorrosion und für starke bis sehr starke Korrosionsbelastungen geeignet. Dieser Werkstoff hat sich besonders in chloridbelasteten Bauwerken wie Salzlagerhallen und Schwimmbädern bewährt.

Achtung: HCR ist kein geschützter Begriff! Manchmal wird diese Abkürzung im Markt für Produkte aus dem Werkstoff 1.4539 benutzt. Dieser Werkstoff ist eine Korrosionwiderstandsklasse niedriger als 1.4529 eingestuft und darf nicht uneingeschränkt in Schwimmbädern verwendet werden.



### Galvanisch verzinkt

Diese Produkte werden in einem elektrolytischen Bad mit einer relativ dünnen und gleichmäßigen Zinkschichtdicke versehen. Die Anwendung beschränkt sich meistens auf Bauteile, die in der Nutzungsklasse 1 oder 2 verwendet werden können.



AUSSEN-

BEREICH

### Außenbereich

Der Außenbereich beschreibt eine Umgebung in der Bauteile keinen Schutz durch Überdachungen haben und daher der Witterung frei ausgesetzt sind. Diese Bauteile müssen der Nutzungsklasse (NKL) 3 zugewiesen werden.



# Korrosive Umgebung

Die Korrosionsbelastung einer Umgebung kann einer Korrosivitätskategorie gemäß DIN EN 12944-2 zugeordnet werden. Diese reicht von C1, einer unbedeutenden Belastung bis C5M, einer sehr starken Belastung z.B. durch Meerwasser.



### Nutzungsklassen

(Erläuterungen siehe Berechnungsvoraussetzungen)

Nutzungsklasse 1



Nutzungsklasse 2



Nutzungsklasse 3



### Feuerwiderstandsdauer bis 30 Minuten



Gemäß einer harmonisierten europäischen Norm CE-gekennzeichnet



Gemäß einer ETA CE gekennzeichnet



Bei diesem Produkt existieren Schutzrechte oder sie sind beantragt

# Informationen - Allgemeines



### CNA Kammnägel:

Die Simpson Strong-Tie® CNA4,0x35/ 40/ 50/ 60/ 75/ 100 Kammnägel mit Nenndurchmesser 4,0 mm bzw. CNA6,0x60/ 80/ 100 Kammnägel mit Nenndurchmesser 6,0 mm sind für die Befestigung von Holzverbindern und Stahlblechen vorgesehen. Die Bemessung der Nägel ist in der ETA-04/0013 geregelt. Die Zinkschichtdicke beträgt mindestens 7 µm. Die Nagelgrößen 4,0 x 40/ 50/ 60 sind außerdem in nichtrostendem Stahl (1.4401) erhältlich. Die Größe 4,0 x 40 ist auch in stückverzinkter Ausführung mit einer Zinkschichtdicke von ca. 50 µm erhältlich.

### CSA Schrauben:

Die CSA5,0x35/40/50/80 Schrauben mit Nenndurchmesser 5,0 mm können alternativ zu den Kammnägeln mit Nenndurchmesser 4,0 mm verwendet werden. Für die Mindestabstände gelten die gleichen Angaben wie für die 4,0 mm dicken Kammnägel. Werden CSA Schrauben verwendet, können bei genauer Berechnung höhere Tragwerte erzielt werden.

Dieses ist besonders dann von Vorteil, wenn die zu verwendenden Hölzer dünn sind. Welche Kammnägel durch entsprechende CSA Schrauben ausgetauscht werden dürfen, kann der Tabelle im Kapitel für die Verbindungsmittel entnommen werden. Der Austausch von CSA Schrauben durch CNA Kammnägel ist jedoch ohne Nachweis nicht möglich. Die CSA5,0x80 eignet sich aufgrund ihrer Länge für die Überbrückung von Zwischenschichten. Die Zinkschichtdicke beträgt mindestens 7  $\mu$ m. CSA Schrauben bis  $\ell$  = 40 mm können auch aus nichtrostendem Stahl (1.4401) geliefert werden. Andere Edelstahlsorten siehe im Kapitel für nichtrostende Verbinder.

### SN Sparrennägel:

Sparrennägel 6,0 x 80/ 110/ 150/ 180/ 210/ 230/ 260/ 280/ 300/ 330/ 350 mit Nenndurchmesser 6,0 mm sind für Holz/Holz Anschlüsse geeignet. Die Bemessung der Nägel ist im EC5 geregelt. Die Zinkschichtdicke beträgt mindestens 7  $\mu m$ .

### SD Stabdübel:

Simpson Strong-Tie® Stabdübel werden in der Stahlgüte S235 JR hergestellt. Bei den galvanisch verzinkten Stabdübeln beträgt die Zinkschichtdicke 5–12 µm. Bei den feuerverzinkten Stabdübeln beträgt die Zinkschichtdicke etwa 50 µm. Sie sind auf Anfrage auch in Edelstahl Rostfrei und S355 erhältlich. Die Ermittlung der Tragfähigkeitswerte erfolgt nach EC5.

### Verbindungsmittelabstände (Nägel und Schrauben) im Holz:

Der EC5 + NA regeln mögliche Anordnungen von Nägeln und Schrauben. Wenn in einer ETA nicht anders geregelt, muss die wirksame Anzahl von Nägeln in einer Reihe in Faserrichtung nach EC5 + NA berechnet werden, sofern die Nägel nicht mindestens um 1d (d = Nageldurchmesser) rechtwinklig zur Faserrichtung versetzt sind. Die Mindestholzdicken bei Verwendung von Kammnägeln bei Stahlblech-Holz-Verbindungen sind in Tabelle NA.14 des nationalen Anhangs zum EC5 angegeben. Für die CSA5,0xl Schrauben gelten die gleichen Abstände wie für die CNA4,0xl Kammnägel. Diese Abstände sind bei Simpson Strong-Tie® Holzverbindern durch die Zulassungen geregelt und brauchen nicht weiter untersucht zu werden.

### Vorbohrung:

Die Bedingungen für profilierte Nägel in vorgebohrten Nagellöchern sind im NA unter NCI zu 8.3.2 (NA.13) geregelt. Wenn vorgebohrt werden soll, sind die Nagellöcher in ganzer Einschlagtiefe der Nägel mit einem Bohrdurchmesser von etwa 0,9 x d vorzubohren. Bei Beanspruchung der Nägel in Schaftrichtung (Herausziehen) dürfen die Nagellöcher nicht vorgebohrt werden. CSA Schrauben brauchen i.d.R. ebenfalls nicht vorgebohrt zu werden.

# Informationen - Allgemeines



### Stahlblech-Holz-Verbindungen:

Die Auswahl eines Holzverbinders ist abhängig von der Geometrie der Verbindung, der Größe und Richtung der Beanspruchung, der Montagemöglichkeit sowie den Anforderungen an Korrosionsschutz, Brandschutz und Ästhetik. Nach Auswahl eines geeigneten Verbinders, ist es notwendig den Nachweis zu führen, dass der Bemessungswert des Widerstandes mindestens so groß ist wie der entsprechende Bemessungswert der Einwirkung.

### Tabellen der Tragfähigkeit in diesem Katalog:

Die im vorliegenden Katalog enthaltenen charakteristischen Werte der Tragfähigkeit  $R_{_{K}}$  basieren auf der jeweiligen ETA sowie dem EC5 + NA. Diese Werte sind in Bemessungswerte der Tragfähigkeit  $R_{_{d}}$  unter Verwendung der entsprechenden  $k_{_{mod}}$  Beiwerte und dem Teilsicherheitsbeiwert  $\gamma_{_{M}}$  für Holz umzurechnen. Für  $\gamma_{_{M}}$  ist stets der holzabhängige Wert 1,3 einzusetzen. Etwaige Stahlabhängige Werte wurden bereits bei der Ermittling der Tragfähigkeiten berücksichtigt. Eine weitere Untersuchung ist nicht nötig.

Folgende Bedingung ist einzuhalten:  $\frac{F_d}{R_d} \leq 1$ 

F<sub>d</sub> ist der Bemessungswert der Beanspruchung
 R<sub>d</sub> ist der Bemessungswert der Tragfähigkeit

Generell ist folgende Formel anzuwenden:  $R_{i,d} = \frac{R_{i,k} \times k_{mod}}{\gamma_{M}}$ 

Sind bei den Tragfähigkeitswerten in den Tabellen " $k_{\rm mod}$ -Anteile" enthalten, so sind diese entsprechend einzusetzen:

# Beispiel:

In einer Tabelle ist die charakteristische Tragfähigkeit angegeben mit:

$$R_{i,k} = \frac{Wert}{k_{i,k}^{0,5}}$$

 $\text{dann lautet die Rechnung:} \quad R_{i,d} = \frac{R_{i,k} \times k_{mod}}{\gamma_{_{M}}} \ = \ \frac{\text{Wert x } k_{mod}}{k_{mod}^{-0.5} \times \gamma_{_{M}}}$ 

Die Ermittlung der charakteristischen Widerstandswerte  $R_k$  basiert auf dem neusten Stand der Technik für Stahlblech-Holz-Verbindungen und ist oft durch umfangreiche Versuche untermauert.

Hinweise auf die maßgebenden European Technical Assessments (ETA = europäisch technische Bewertung) sind im Katalog bei den entsprechenden Verbindern zu finden. Es gelten die ETAs im vollen Wortlaut. Die ETAs stehen auf **strongtie.de** bei den jeweiligen Produkten zum Herunterladen zur Verfügung. Die charakteristischen Tragfähigkeiten unserer CNA Kammnägel und CSA Schrauben sind in der ETA-04/0013 geregelt. Die Weiterleitung von Kräften in angrenzende Bauteile sowie der Nachweis der Bauteile selbst ist nicht Bestandteil dieses Katalogs. Insbesondere die Befestigung der Bolzen im Beton.

Stützenfüße sind in der ETA-07/0285 geregelt und dürfen für statisch tragende Konstruktionen eingesetzt werden.

Die Verwendung von Pfostenhaltern ist für den nichttragenden konstruktiven Bereich vorgesehen. Für Pfostenhalter werden keine statischen Werte angegeben.

### Verwendete Norm

Die maßgebende Norm zur Bemessung im Holzbau ist der EC5 in seiner gültigen Fassung inkl. der gültigen nationalen Anwendungsdokumente NA.

# Verfügbare European Technical Approvals (ETAs), Stand August 2020

|             | · //                                            |
|-------------|-------------------------------------------------|
| ETA Nummer  |                                                 |
| ETA-04/0013 | Nägel, Schrauben                                |
| ETA-06/0106 | Winkelverbinder                                 |
| ETA-06/0270 | Balkenschuhe                                    |
| ETA-07/0053 | Gerberverbinder                                 |
| ETA-21/0482 | Sparrenpfettenanker                             |
| ETA-07/0245 | Balkenträger, TU, TUS, ETB, EL, ELS, ATFN, ICST |
| ETA-07/0285 | Stützenfüße, Zuganker, AKR                      |
| ETA-07/0317 | Schwellenhalter, Zyklop                         |
| ETA-08/0053 | EWP                                             |
| ETA-10/0440 | Windaussteifungssystem                          |
| ETA-17/0554 | EWP                                             |

Die jeweiligen Nummern der DoP (Declaration of Performance -Leistungserklärung) sind bei den entsprechenden Produkten genannt und stehen auf unserer Website **strongtie.de** zum Download zur Verfügung.

# Informationen – Berechnungsvoraussetzungen



### Holzwerkstoffe:

In der Regel wird von Nadelholz C24 oder Brettschichtholz GL24c mit einer Rohdichte  $\rho_{\rm k}=350~{\rm kg/m^3}$ ausgegangen. Die angegebenen Tabellenwerte basieren auf Verwendung dieser Hölzer.

Bei der Verwendung von Hölzern mit abweichenden Rohdichten sind die Angaben der jeweiligen ETA zu beachten. Vereinfacht kann mit den angegebenen Tabellenwerten auch bei höheren Rohdichten gerechnet werden.

Bauteile aus anderen Holzwerkstoffen sind ebenfalls anwendbar. Zum Beispiel dürfen die Haupt- und Nebenträger auch aus folgenden Materialien bestehen

- Furnierschichtholz
- Furnierstreifenholz
- Langspanholz
- · Vertikal laminiertes Brettschichtholz
- Duo- und Triobalken
- Kreuzbalken
- Mehrschichtplatten
- Bau- und Furnierschichtholz
- ggf. OSB- und Spanplatten
- Brettsperrholz

Genaueres ist in den jeweiligen ETAs angegeben.

### Imprägnierte Hölzer:

Bei imprägnierten Hölzern und Hölzern mit aggressiven Inhaltsstoffen (z.B. Gerbsäure in Eiche), die an den Holzverbindern bzw. an den Verbindungsmitteln Korrosion verursachen können, ist es zweckmäßig bzw. erforderlich rostfreie Holzverbinder und Verbindungsmittel zu verwenden.

### Nutzungsklassen:

Zur Bemessung werden Holzbauteile, dem Umgebungsklima entsprechend, einer von drei Nutzungsklassen (NKL) zugeordnet. Diese berücksichtigen den Einfluss der Holzausgleichsfeuchte. Innerhalb eines Bauwerkes können unterschiedliche Nutzungsklassen vorliegen.

- In die Nutzungsklasse 1 sind alle Bauteile einzustufen, die in einer allseitig geschlossenen und beheizten Hülle gegenüber dem Außenklima geschützt sind. Die mittlere Holzfeuchte von Nadelhölzern beträgt dann nicht mehr als 12%, z.B. Wohnräume.
- Die Nutzungsklasse 2 erfasst in erster Linie alle Bauteile in offenen, aber überdachten Bauwerken, die der unmittelbaren Bewitterung nicht ausgesetzt sind. Die mittlere Holzfeuchte von Nadelhölzern beträgt dann nicht mehr als 20%, z.B. offene und / oder ungeheizte Lagerhallen.
- In die Nutzungsklasse 3 werden alle Bauteile eingestuft, die der Witterung ungeschützt ausgesetzt sind, z.B. Stützenfüße in Carportanlagen. Das bedeutet, dass stets die Nutzungsklasse 3 anzusetzen ist, wenn die Bedingungen für eine Einstufung in die Nutzungsklassen 1 und 2 nicht garantiert werden können.

Der Korrosionsschutz der Verbinder und Verbindungsmittel muss in jedem Fall gesondert berücksichtigt werden. Ist die Verwendung eines Produktes einer bestimmten Nutzungsklasse zugeordnet, so ist dies als maximal mögliche Nutzungsklasse anzusehen. Der Einsatz in allen darunterliegenden Nutzungsklassen ist uneingeschränkt möglich. So kann zum Beispiel ein Produkt das höchstens in Nutzungsklasse 2 verwendbar ist, problemlos in Nutzungsklasse 1 eingesetzt werden. Bei Umgebungsbedingungen mit erhöhtem chemischem Angriff sind zur Ermittlung der erforderlichen Werkstoffgüte entsprechende

Fachnormen (z.B. EN1993-1-4 (A)) zugrunde zu legen.

| Klasse der<br>Lasteinwirkungsdauer (KLED) | Größenordnung der akkumulierten Dauer<br>der charakteristischen Lasteinwirkung |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Ständig                                   | Länger als 10 Jahre                                                            |  |  |  |
| Lang                                      | 6 Monate bis 10 Jahre                                                          |  |  |  |
| Mittel                                    | 1 Woche bis 6 Monate                                                           |  |  |  |
| Kurz                                      | kürzer als eine Woche                                                          |  |  |  |
| Sehr kurz                                 | kürzer als eine Minute                                                         |  |  |  |

Die Einteilung von Einwirkungen nach der DIN 1055-1 und DIN 1055-3, DIN 1055-4, DIN 1055-5, DIN 1055-9, E DIN 1055-10 und DIN 1055-100 sind im EC5 - NA in Tabelle NA.1 aufgeführt.

Nach der Zuordnung in eine KLED kann der bemessungsrelevante Wert für  $k_{\rm mod}$  ermittelt werden, siehe hierzu EC5, Tabelle 3.1 ff.

# Informationen - Querzug

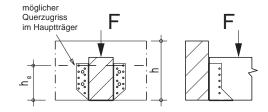


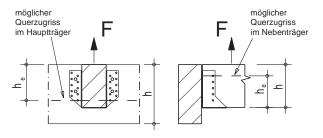
### Querzug:

Bei einer Querzugbeanspruchung wird das Holz quer zu seiner Faser auf Zug belastet. Quer zur Faser weist das Holz sehr geringe Festigkeiten auf. Darum ist es erforderlich Anschlüssen, die Querzug hervorrufen, besondere Beachtung zu schenken.

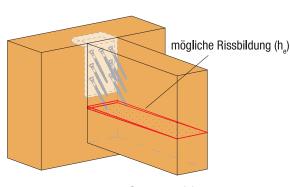
Hier sind die Trägerhöhe sowie die Lage des Anschlusses von entscheidendem Einfluss.

Für den Zug rechtwinklig zur Faser ist nach dem EC5 (6.1.3) der Einfluss der Bauteilgröße zu berücksichtigen.

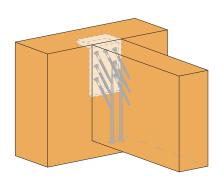

Der Nachweis für Verbindungsmittelkräfte unter einem Winkel zur Faserrichtung ist nach EC5; 8.1.4 zu führen.


Ggf. erforderliche Verstärkungen können nach NA.6.8.2 nachgewiesen werden.

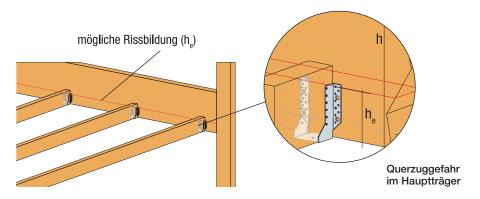
 $\rm h_{\rm e} = \rm Gr\ddot{o} \rm B ter \ Abstand \ eines \ Verbindungsmittels \ vom \ belasteten \ Rand$ 


h = Querschnittshöhe des Holzes

Die Nachweise sind ggf. für Haupt- und Nebenträger zu führen.







# Queranschlusssituationen



Querzuggefahr im Nebenträger



EL-Verbinder mit Querzugverstärkung im Nebenträger, durch unterseitig eingebrachte Vollgewindeschrauben.



Situation eines querzuggefährdeten Hauptträgers ohne Verstärkungen

# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC

# Informationen - Querzug



Beispiel eines Querzugnachweises bei einem Queranschluss mit einem Balkenschuh nach DIN EN 1995-1-1 + NA:2013-08 / NCI zu 8.1.4

### Beispiel:

Hauptträger b x h: 60 x 180 mm Nebenträger b x h: 80 x 140 mm

Balkenschuh: 80/120 + Kammnägel CNA4,0x50

$$\label{eq:kmod} \begin{split} &\text{Modifikationsbeiwert:} & & & k_{\text{mod}} = 0.8 \\ &\text{Bemessungslast:} & & F_{\text{vEd}} = 11.5 \text{ kN} \end{split}$$

Ein Querzugnachweis ist für den Hauptträger erforderlich, falls:

Abs. (NA. 6)

Abs. (NA. 10 – 12)

 $h_e/h < 0.7$   $\Rightarrow$  Nachweis erforderlich

h₂/h < 0,2 ⇒ nur kurze Lasteinwirkungsdauern möglich (z.B. Windsogkräfte)

 $h_a = 112,5 \text{ mm}$   $h_a/h = 112,5 / 180 = 0,62 \le 0,7$   $\Rightarrow$  Nachweis erforderlich

Prüfen, ob für die Bemessung eine oder zwei Verbindungsmittelgruppen relevant sind:

I, mit 106 mm ist kleiner 2 x h und größer 0,5 x h.

Es muss mit zwei einzelnen Verbindungsmittelgruppen gerechnet werden.

$$\frac{\mathsf{F}_{\mathsf{v,Ed}}}{\mathsf{F}} \le 1,0$$
 GL (NA. 103)

$$F_{90,Rd} = k_s \times k_r \times \left(6.5 + \frac{18 \times h_e^2}{h^2}\right) \times \left(t_{ef} \times h\right)^{0.8} \times f_{t,90,d} [N] \quad \text{(je Gruppe)}$$
 GL (NA. 104)

$$k_{s} = \max \left\{ 1; 0.7 + \frac{1.4 \times a_{r}}{h} \right\} = \left\{ 1; 0.7 + \frac{1.4 \times 20}{180} = 0.86 \right\} \Rightarrow 1.0 \text{ maßgebend}$$
 
$$\Rightarrow 1.0 \text{ maßgebend}$$

$$k_{r} = \frac{n}{\sum_{i=1}^{n} {n_{i} \choose n_{i}}^{2}}$$
GL (NA.106)

$$k_{r} = \frac{10}{\left(\frac{67,5}{67,5}\right)^{2} + \left(\frac{67,5}{77,5}\right)^{2} + \left(\frac{67,5}{87,5}\right)^{2} + \left(\frac{67,5}{97,5}\right)^{2} + \left(\frac{67,5}{107,5}\right)^{2} + \left(\frac{67,5}{107,5}\right)^{2} + \left(\frac{67,5}{127,5}\right)^{2} + \left(\frac{67,5}{137,5}\right)^{2} + \left(\frac{67,5}{142,5}\right)^{2} + \left(\frac{67,5}{157,5}\right)^{2}} = 2,22$$
 (siehe Abb.1)

$$t_{ef} = min \ \{b; \ t_{pen}; \ 15d\} = \left\{ \begin{array}{c} 60 \\ 48,5 - 2,0 = 46,5 \\ 15 \times 4,0 = 60 \end{array} \right\} \\ \Rightarrow 46,5 \ maßgebend \\ \Rightarrow 46,5 \ maggebend \\ \Rightarrow 46,5 \ maggebend \\ \Rightarrow 46,5 \ maggebend \\ \Rightarrow 46,5 \ maggebend$$

$$f_{t,90,d} = \frac{f_{t,90,k} \times k_{mod}}{\gamma_M} = \frac{0.4 \times 0.8}{1.3} = 0.246$$

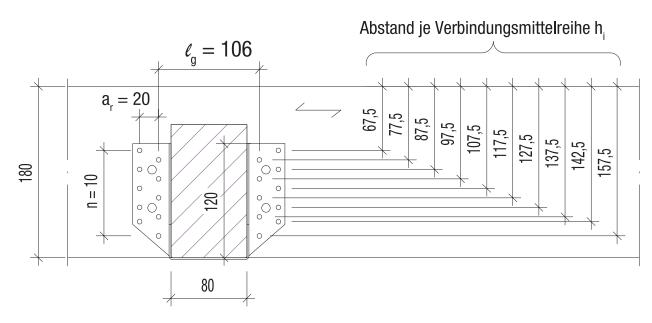
$$F_{90,Rd} = 1.0 \times 2.22 \times \left(6.5 + \frac{18 \times 112.5^2}{180^2}\right) \times \left(46.5 \times 180\right)^{0.8} \times 0.246 = 10158N \times 2$$

**Prüfen:**  $0.5h \le \ell_a < 2h$ , dann Reduzierung von  $F_{90.8d}$  gemäß Gleichung NA. 107.

$$\ell_{g} = 100 \quad \left\{ \begin{array}{l} \geq 0.5 \times 180 \\ < 2.0 \times 180 \end{array} \right\} = \left\{ \begin{array}{l} \geq 90 \\ < 360 \end{array} \right\}$$
  $\Rightarrow$  Reduzierung erforderlich

$$k_g = \frac{106}{4 \times 180} + 0,5 = 0,647$$
 GL (NA. 107)

 $F_{90,Rd} \times k_g = 10158 \times 2 \times 0,647 = 13,1 \text{ kN}$ 


# Nachweis:

$$\frac{F_{v,Ed}}{F_{90,Rd}} = \frac{11,5 \text{ kN}}{13,1 \text{ kN}} = 0,87 \le 1,0$$
  $\Rightarrow$  keine Querzugverstärkung erforderlich

# Informationen – Querzug



Abb. 1 Systembeispiel mit einem Balkenschuh 80 x 120



- a<sub>r</sub> <sup>1)</sup> Abstand der beiden äußersten Verbindungsmittel in mm, der Abstand der Verbindungsmittel untereinander in Faserrichtung des querzuggefährdeten Holzes darf 0,5 x h nicht überschreiten
- b Breite des guerzuggefährdeten Holzes (Hauptträger)
- $\mathbf{f}_{\mathrm{t,90,k}}$  Charakteristischer Festigkeitswert des Holzes/ Holzwerkstoffs quer zur Faser
- $F_{vEd}$  Bemessungswert der Kraftkomponente rechtwinklig zur Faserrichtung in N
- $\mathsf{F}_{_{90,\mathsf{Rd}}}$  Bemessungswert der Querzugtragfähigkeit des Bauteils in N
- h Höhe des querzuggefährdeten Holzes (Hauptträger)
- $h_1^{(1)}$  Abstand des nächst liegenden Verbindungsmittels zum unbeanspruchten Rand  $(h h_a)$
- h, Abstand der jeweiligen Verbindungsmittelreihe vom unbeanspruchten Bauteilrand in mm
- ${\rm h_e^{\ 1)}}$  Abstand des am entferntesten angeordneten Verbindungsmittels vom beanspruchten Holzrand in mm
- $k_{\rm g}$  Beiwert zur Reduzierung der Tragfähigkeit  ${\rm F_{90,Rd}}$  bei eng beieinanderliegenden Verbindungsmittelgruppen
- $\mathbf{k}_{_{\! f}}$  Beiwert zur Berücksichtigung mehrerer übereinander angeordneter Verbindungsmittel
- $k_{\rm s}$  Beiwert zur Berücksichtigung mehrerer nebeneinander angeordneter Verbindungsmittel
- I<sub>a</sub> 1) Lichter Abstand zwischen den Verbindungsmittelgruppen
- n Anzahl der Verbindungsmittelreihen übereinander
- t<sub>ef</sub> Ansetzbare Einbindetiefe des Verbindungsmittels in mm, (siehe (NA. 8) und (NA. 9))
- t<sub>pen</sub> Einbindetiefe des Verbindungsmittels (Gesamtlänge ℓ abzüglich Kopfdicke, abzüglich der Materialdicke des anzuschließenden Bauteils)

<sup>&</sup>lt;sup>1)</sup> Für genauere Abstandsmaße stehen CAD Zeichnungen zum Download auf der jeweiligen Produktseite unserer Website **strongtie.de** bereit.







# Winkelverbinder

| Allgamainaa                        | 17 10 |
|------------------------------------|-------|
| Allgemeines                        | 17-10 |
| Winkelverbinder – Übersicht        |       |
| AA                                 | 22    |
| AB55365 / AC35350 / AF90265        | 23    |
| AB70 / AB90 / AB105                | 24-26 |
| SC2P – 2-teiliger Schubwinkel      |       |
| Schubwinkel AB / BNV               | 28-29 |
| ABD                                | 30-31 |
| Schallschutzwinkel – ABAI105       | 32-33 |
| Schallschutz – SIT Schalldämmlager |       |
| ABB                                |       |
| Betonwinkel – ABL / ABS            | 37    |
| ABR / ABRL / ACR                   |       |
| ABR170 / ABR220                    |       |
| E20/3 / E9/2,5                     |       |
| ABR255                             |       |
| ABR255S0                           | 50-51 |
| AB255HD                            |       |
| AB255SSH                           | 54-55 |
| ACW155                             | 56-57 |
| ADR / AT                           | 58-59 |
| AE                                 | 60-62 |
| AJ                                 |       |
| AG                                 |       |
| AKR                                |       |
| ANP                                |       |
| ANPS                               | 71    |
| EBC / AB45C                        |       |
| TA                                 |       |
| KNAG                               |       |
| Kragarmbeschlag – MAXIMUS™         |       |
|                                    |       |





Mehr als ein Stück Blech, das sind die Winkelverbinder von Simpson Strong-Tie®



**ABR105** 

# Allgemeines



### Anwendung

Die Winkelverbinder werden für Holz / Holz / Beton und Holz / Stahlanschlüsse verwendet.

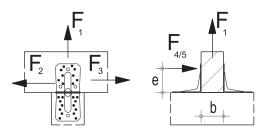
Die Anschlüsse können einseitig oder mit sich gegenüberliegenden Winkelverbindern hergestellt werden.

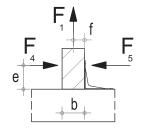
### Material und Korrosionsschutz

- S250GD
- S235JR

Die meisten Winkelverbinder werden aus feuerverzinktem Stahlblech mit einer Zinkschichtdicke von 20 µm hergestellt.

Ein Teil der Winkelverbinder ist mit 55 µm Zinkschichtdicke stückverzinkt. Einige Winkelverbinder werden aus rostfreiem Stahl (siehe Kapitel 10) produziert und sind bis zur Widerstandsklasse III einsetzbar.


### Befestigungsmittel


- CNA4,0xl Kammnägel
- CSA5,0xl Schrauben
- Bolzen

### Ausnagelung

Nagelbilder sind den einzelnen Winkelverbindern zugeordnet. Werden keine Angaben gemacht, wird von einer Vollausnagelung ausgegangen.

# Kraftrichtungen





### Zwei Winkelverbinder pro Anschluss

Die Winkelverbinder sind gegenüberliegend anzuordnen.

F. Abhebende Kraft, die mittig in der Pfette angreift.

F, und F, Belastung in Stabrichtung des anzuschließenden Balkens.

F<sub>4</sub> und F<sub>5</sub> greift in der Höhe e an.

F. Kraftrichtung entgegensetzt zu F.

### Ein Winkelverbinder pro Anschluss

F<sub>1</sub> Abhebende Kraft die in der Symmetrieebene des Winkelverbinders im Abstand f vom senkrechten Schenkel angreift

Wenn sichergestellt ist, dass sich das anzuschließende Holz nicht verdreht, kann jeweils die Hälfte der Tragfähigkeiten für zwei Winkelverbinder angenommen werden.

F<sub>2</sub> und F<sub>3</sub> Belastung parallel zur Biegekante des Winkelverbinders.

F<sub>4</sub> Kraftrichtung im Abstand e zum Winkelverbinder hin gerichtet.

 ${\sf F}_{\scriptscriptstyle 5}$  Kraftrichtung im Abstand e vom Winkelverbinder weg gerichtet.

F<sub>6</sub> Kraftrichtung entgegensetzt zu F<sub>1</sub>.

### Bemessungswerte der Tragfähigkeit

In den Tabellen sind generell die charakteristischen Widerstandswerte  $\mathbf{R}_{\!_{1\nu}}$  angegeben.

Zur Ermittlung der Bemessungswerte R<sub>i,d</sub> ist folgende Gleichung anzuwenden:

$$R_{i,d} = \frac{R_{i,k} \times k_{mod}}{V}$$

### Kombinierte Belastung

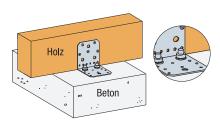
Die Nachweise für Lastüberlagerungen sind ausschließlich mit Bemessungswerten zu führen.

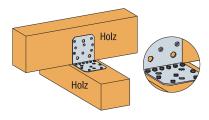
Bei Belastungsüberlagerungen muss die nachstehende Gleichung erfüllt sein:

$$\sqrt{\left|\frac{F_{1,d}}{R_{1,d}} + \frac{F_{4/5,d}}{R_{4/5,d}}\right|^2 + \left(\frac{F_{2/3,d}}{R_{2/3,d}}\right)^2} \le 1$$

# Allgemeines




### Anwendungshinweise:


Sind anzuschließende Bauteile konstruktiv gegen Verdrehen gesichert, können für Anschlüsse in die Lastrichtungen  ${\rm F_1}$  und  ${\rm F_{2/3}}$  mit nur einem Winkel, die halben Werte der Tabellen für  ${\rm R_1}$  und  ${\rm R_{2/3}}$  angenommen werden. Für drehbar gelagerte Hölzer, und für die Kraftrichtungen  ${\rm F_4}$  und  ${\rm F_5}$  mit Abständen b und e, sind weitere Werte und Infos in der ETA und auf unserer Website **strongtie.de** aufgeführt.

Winkelverbinder, auch gleichschenklige, sind in der Lochung zum großen Teil unsymmetrisch.

Um die statischen Werte der Tragfähigkeiten korrekt ansetzen zu können und die Einhaltung der Randabstände der Verbindungsmittel zu gewährleisten, ist bei der Planung und Montage stets auf die Position der Schenkel und die Einhaltung der Nagelbilder zu achten.

Im Allgemeinen gilt: am lastabtragenden Bauteil werden die Verbindungsmittel nahe der Biegekante angeordnet.

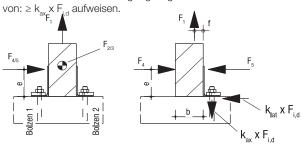




Mit den auf den folgenden Seiten abgebildeten Angaben und statischen Werten lassen sich die überwiegende Anzahl an Verbindungen mit Winkelverbindern realisieren und nachweisen. Weitere Möglichkeiten der Anwendungen und zur Befestigung mit anderen Verbindungsmitteln, sind auf unserer Website strongtie.de bei den jeweiligen Produkten und den zugehörigen ETA zu finden.

### Anschlüsse mit Bolzen

Bei Winkelanschlüssen müssen die angegebenen Faktoren für die Nachweise der Bolzen berücksichtigt werden.


$$R_{bolt \text{ ax/ lat.d}} \ge Faktor_{ax/ \text{ lat}} x \text{ wirkende Last}$$

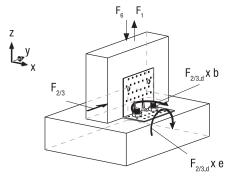
Der Faktor k<sub>lat</sub> bezieht sich auf die Scherkraft des Bolzens.

Der Faktor k, bezieht sich auf die Zugkraft des Bolzens.

Jeder Bolzen muss eine Schertragfähigkeit von:  $\geq k_{lat} \times F_{i,d}$  aufweisen.

Jeder Bolzen muss eine Zugtragfähigkeit




Bei Anschlüssen mit mehr als einem Bolzen beziehen sich die angegebenen Faktoren auf die Bolzengruppe.

Überlagerungen der Scher- und Zuglasten sind zu berücksichtigen.

Bei Anschlüssen mit 2 Bolzen je Winkel ist ferner Folgendes zu berücksichtigen:

$$V_{y,d} = F_{2/3,d}$$
  $M_{x,d} = F_{2/3,d} \times e$   $M_{z,d} = F_{2/3,d} \times b$ 

Die Maße b und e sind bei den Produkten jeweils in [mm] angegeben.



Es wird empfohlen die Bolzen oder Bolzengruppe mit der Software, z.B. Anchor Designer<sup>®</sup> von Simpson Strong-Tie<sup>®</sup> nachzuweisen.

Die Software Anchor Designer<sup>©</sup> steht auf **strongtie.de** kostenfrei zur Verfügung.



Winkelverbinder – Übersicht

# SIMPSON Strong-Tie

| Gruppe                   | Art. Nr.       | Seite | CE       | Holz an Ho   | olz                   |                |                     | Holz an Be         | olz an Beton       |                    |  |
|--------------------------|----------------|-------|----------|--------------|-----------------------|----------------|---------------------|--------------------|--------------------|--------------------|--|
|                          |                |       |          | Balken<br>an | Stütze an<br>Schwelle | Nebentr.<br>an | Riegel an<br>Stütze | Balken<br>an Beton | Stütze an<br>Beton | Riegel an<br>Beton |  |
| A A                      | AA60280        | 00    |          | Balken       |                       | Haupttr.       |                     |                    |                    |                    |  |
| AA                       |                | 22    | <b>✓</b> | √<br>        |                       |                |                     |                    |                    |                    |  |
| AB                       | AB55365        | 23    |          | k            |                       |                |                     |                    |                    |                    |  |
| AC                       | AC35350        | 23    |          | k            |                       |                |                     |                    |                    |                    |  |
| AF                       | AF90265        | 23    |          | k            |                       |                |                     |                    |                    |                    |  |
|                          | AB70           | 24    | <b>√</b> | ✓            |                       |                |                     |                    |                    |                    |  |
|                          | AB90           | 24    | <b>✓</b> | <b>√</b>     |                       | ✓              | ✓                   | <b>✓</b>           |                    |                    |  |
|                          | AB90-135GR-B   | 24    |          |              |                       |                |                     |                    |                    |                    |  |
| AB                       | AB105          | 24    | ✓        | <b>√</b>     |                       | ✓              | ✓                   | <b>✓</b>           |                    |                    |  |
|                          | AB105-135GR-B  | 24    |          |              |                       |                |                     |                    |                    |                    |  |
|                          | AB255HD        | 52    | <b>✓</b> | <b>✓</b>     | CLT                   | ✓              | ✓                   |                    |                    |                    |  |
|                          | AB255SSH       | 54    | <b>✓</b> | <b>✓</b>     | CLT                   | ✓              | ✓                   |                    |                    |                    |  |
|                          | SC2P-V100      | 27    | ✓        | ✓            |                       |                |                     | ✓                  |                    |                    |  |
|                          | SC2P-H180      | 27    |          |              |                       |                |                     |                    |                    |                    |  |
| Schubwinkel              | AB36125        | 28    | ✓        | ✓            |                       |                |                     |                    |                    |                    |  |
| 23.1001111101            | AB6983         | 28    | 1        |              |                       |                |                     | <b>✓</b>           |                    |                    |  |
|                          | AB3560         | 28    | ✓        | ✓            |                       |                |                     |                    |                    |                    |  |
|                          | BNV33          | 28    | ✓        | ✓            |                       |                |                     | ✓                  |                    |                    |  |
| ABD                      | ABD45100       | 30    | ✓        | ✓            |                       |                |                     | ✓                  |                    |                    |  |
|                          | ABAI105        | 32    | ✓        | ✓            | CLT                   |                |                     |                    |                    |                    |  |
|                          | SIT75-100-12   | 34    |          |              |                       |                |                     |                    |                    |                    |  |
| ABAI                     | SIT150-100-12  | 34    |          |              |                       |                |                     |                    |                    |                    |  |
| +<br>SIT Schalldämmlager | SIT350-100-12  | 34    |          |              |                       |                |                     |                    |                    |                    |  |
|                          | SIT750-100-12  | 34    |          |              |                       |                |                     |                    |                    |                    |  |
|                          | SIT1500-100-12 | 34    |          |              |                       |                |                     |                    |                    |                    |  |
| ABB                      | ABB40390       | 36    | /        | /            |                       |                |                     |                    |                    |                    |  |
|                          | ABL7514G       | 37    |          |              |                       |                |                     | k                  | k                  |                    |  |
|                          | ABL10014G      | 37    |          |              |                       |                |                     | k                  | k                  |                    |  |
|                          | ABL15014G      | 37    |          |              |                       |                |                     | k                  | k                  |                    |  |
| ABL / ABS                | ABL15017G      | 37    |          |              |                       |                |                     | k                  | k                  |                    |  |
|                          | ABS10011G      | 37    |          |              |                       |                |                     | k                  | k                  |                    |  |
|                          | ABS10014G      | 37    |          |              |                       |                |                     | k                  | k                  |                    |  |
|                          | ABR70          | 38    | /        | /            |                       |                |                     |                    |                    |                    |  |
|                          | ACR7015        | 38    | ✓        | /            |                       |                |                     |                    |                    |                    |  |
|                          | ABR90          | 38    | /        | /            |                       |                | ✓                   | /                  |                    |                    |  |
|                          | ABR9015        | 38    | /        | /            |                       |                |                     | /                  |                    |                    |  |
|                          | ABR9020        | 38    |          | /            |                       |                | ✓                   |                    |                    |                    |  |
|                          | ACR9020        | 38    | /        | /            |                       |                |                     |                    |                    |                    |  |
|                          | ABR98          | 38    | /        | <i>'</i>     |                       |                |                     |                    |                    |                    |  |
|                          | ABRL98         | 38    | ✓ ✓      | ✓ ✓          |                       |                |                     |                    |                    |                    |  |
| ABR<br>ACR               | ABR100         | 38    | ✓ ✓      | ✓ ✓          | CLT                   |                |                     |                    | /                  |                    |  |
| E                        | ABR105         | 38    | ✓<br>✓   | ✓ ✓          | 921                   |                | ✓                   | ✓<br>✓             | ✓ ✓                |                    |  |
|                          | ACR10520       | 38    | ✓<br>✓   | ✓ ✓          |                       |                | ✓ ✓                 | ✓<br>✓             | ✓ ✓                |                    |  |
|                          | ABR170         | 44    | ✓<br>✓   | ✓<br>✓       |                       | <b>√</b>       | ✓<br>✓              | ✓<br>✓             | ✓<br>✓             | ✓                  |  |
|                          | ABR220         | 44    |          |              |                       |                |                     |                    |                    |                    |  |
|                          |                | 44    | √        | √            | <i>\</i>              | √<br>/         | ✓                   | √<br>/             | ✓ ·                | ✓                  |  |
|                          | E9/2,5         |       | /        | <b>/</b>     | ✓ ·                   | ✓ ·            |                     | ✓<br>,             |                    |                    |  |
|                          | E20/3          | 46    | ✓ ·      | ✓ ·          | √<br>CLT              | ✓<br>          |                     | ✓<br>              | <b>/</b>           | √                  |  |
|                          | ABR255         | 48    | <b>/</b> | ✓            | CLT                   | <b>✓</b>       | ✓                   | ✓                  | <b>/</b>           | ✓                  |  |
|                          | ABR255SO       | 50    | ✓        |              | CLT                   |                |                     | ✓                  | ✓                  | ✓                  |  |

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

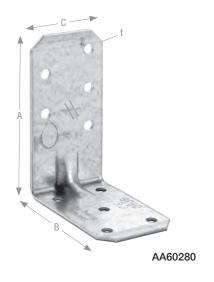
# SIMPSON Strong-Tie

# Winkelverbinder – Übersicht

| Gruppe | Art. Nr.   | Seite | CE       | Holz an Ho             | olz                   |                            |                     | Holz an Beton       |                    |                    |
|--------|------------|-------|----------|------------------------|-----------------------|----------------------------|---------------------|---------------------|--------------------|--------------------|
|        |            |       |          | Balken<br>an<br>Balken | Stütze an<br>Schwelle | Nebentr.<br>an<br>Haupttr. | Riegel an<br>Stütze | Balken<br>an Beton  | Stütze an<br>Beton | Riegel an<br>Beton |
| ACW    | ACW155     | 56    | /        |                        |                       |                            |                     | <b>✓</b>            |                    | /                  |
| ADR    | ADR6035    | 58    | <b>✓</b> |                        |                       |                            |                     | Zugband<br>an Beton |                    |                    |
| AT1    | ADR6090L   | 58    | 1        | ✓                      |                       |                            |                     | ✓                   |                    |                    |
|        | AT1        | 58    | ✓        | ✓                      |                       |                            |                     | ✓                   |                    |                    |
|        | AE48       | 60    | ✓        | ✓                      |                       |                            |                     | ✓                   |                    |                    |
| AE     | AE76       | 60    | ✓        | ✓                      |                       |                            |                     | ✓                   |                    |                    |
|        | AE116      | 60    | /        | /                      |                       |                            |                     | /                   |                    |                    |
|        | AJ60416    | 63    | /        | /                      |                       |                            |                     |                     |                    |                    |
| AJ     | AJ80416    | 63    | /        | <b>✓</b>               |                       |                            |                     |                     |                    |                    |
|        | AJ99416    | 63    | /        | ✓                      |                       |                            |                     |                     |                    |                    |
|        | AG922      | 64    | /        | /                      | /                     |                            | /                   | 1                   | /                  | 1                  |
|        | AG40312    | 64    | /        | ✓                      | /                     | ✓                          | /                   | ✓                   | ✓                  | ✓                  |
| AG     | AG40314    | 64    | /        | /                      | /                     | /                          | /                   | 1                   | /                  | /                  |
|        | AG40412    | 64    | /        | /                      | /                     | /                          | /                   | 1                   | /                  | /                  |
|        | AG40414    | 64    | /        | /                      | /                     | ✓                          | /                   | ✓                   | ✓                  | 1                  |
|        | AKR95G     | 66    | /        | 1                      | /                     |                            |                     | 1                   | ✓                  | 1                  |
|        | AKR95LG    | 66    | /        | /                      | /                     |                            |                     | /                   | /                  | /                  |
|        | AKR95X3    | 66    | /        | /                      | /                     |                            |                     | 1                   | 1                  | 1                  |
|        | AKR95x3L   | 66    | /        | /                      | /                     |                            |                     | /                   | ✓                  | /                  |
|        | AKR135G    | 66    | /        | /                      | /                     |                            |                     | /                   | /                  | /                  |
|        | AKR135LG   | 66    | /        | /                      | /                     |                            |                     | /                   | /                  | /                  |
|        | AKR135X3   | 66    | /        | /                      | /                     |                            |                     | /                   | /                  | /                  |
|        | AKR135x3L  | 66    | /        | /                      | /                     |                            |                     | /                   | ✓                  | /                  |
|        | AKR165G    | 66    | /        | /                      | /                     |                            |                     | /                   | /                  | /                  |
|        | AKR165LG   | 66    | /        | /                      | /                     |                            |                     | /                   | /                  | /                  |
|        | AKR165X3   | 66    | /        | /                      | /                     |                            |                     | /                   | /                  | /                  |
|        | AKR165x3L  | 66    | /        |                        | /                     |                            |                     |                     | /                  | /                  |
| AKR    | AKR205G    | 66    | · /      | <i></i>                | /                     |                            |                     | <i>'</i>            | <i>✓</i>           | /                  |
|        | AKR205LG   | 66    | /        | /                      | /                     |                            |                     | /                   | ✓ /                | /                  |
|        | AKR205X3   | 66    | /        | /                      | /                     |                            |                     | /                   | /                  | <b>√</b>           |
|        | AKR205x3L  | 66    | /        | <i></i>                | /                     |                            |                     | /                   | /                  | <b>√</b>           |
|        | AKR245G    | 66    | ✓ ✓      | <b>√</b>               | /                     |                            |                     | <i>✓</i>            | ✓ /                | /                  |
|        | AKR245LG   | 66    | <b>/</b> | <b>√</b>               | <b>√</b>              |                            |                     | <i>✓</i>            | <i></i>            | ✓ /                |
|        | AKR245X3   | 66    | ✓ ✓      |                        | ✓ ✓                   |                            |                     | <i></i>             | ✓<br>✓             | ✓ /                |
|        | AKR245x3L  | 66    | /        | <i></i>                | <i>'</i>              |                            |                     | /                   | <i></i>            | ✓ /                |
|        | AKR285G    | 66    | ✓ ✓      | ✓ ✓                    | /                     |                            |                     | <i></i>             | ✓<br>✓             | ✓ /                |
|        | AKR285LG-B | 66    | ✓ ✓      | ✓ ✓                    | ✓ ✓                   |                            |                     | ✓ ✓                 | ✓ ✓                | ✓ ✓                |
|        | AKR285X3   | 66    | ✓<br>✓   | ✓ ✓                    | ✓<br>✓                |                            |                     | ✓<br>✓              | ✓<br>✓             | ✓ ✓                |
|        | AKR285x3L  | 66    | V        | ✓<br>✓                 | ✓<br>✓                |                            |                     | ✓<br>✓              | ✓<br>✓             | ✓<br>✓             |

k = konstruktiv

Winkelverbinder


# Winkelverbinder – Übersicht

| Gruppe               | Art. Nr.                                              | Seite | CE | Holz an H              | olz                   |                            |                     | Holz an Beton      |                    |                    |
|----------------------|-------------------------------------------------------|-------|----|------------------------|-----------------------|----------------------------|---------------------|--------------------|--------------------|--------------------|
|                      |                                                       |       |    | Balken<br>an<br>Balken | Stütze an<br>Schwelle | Nebentr.<br>an<br>Haupttr. | Riegel an<br>Stütze | Balken<br>an Beton | Stütze an<br>Beton | Riegel ar<br>Beton |
|                      | ANP251010100                                          | 70    | /  | 1                      | 1                     |                            |                     |                    |                    |                    |
|                      | ANP25101060                                           | 70    | /  | ✓                      | /                     |                            |                     |                    |                    |                    |
|                      | ANP25101080                                           | 70    | /  | 1                      | /                     |                            |                     |                    |                    |                    |
|                      | ANP251020100-B                                        | 70    | /  | /                      | /                     |                            |                     |                    |                    |                    |
|                      | ANP254440                                             | 70    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANP254460                                             | 70    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANP254660                                             | 70    | /  | 1                      |                       |                            |                     |                    |                    |                    |
|                      | ANP2561060                                            | 70    | /  | /                      | /                     |                            |                     |                    |                    |                    |
| ANP                  | ANP2566100                                            | 70    | /  | /                      |                       |                            |                     |                    |                    |                    |
|                      | ANP256640                                             | 70    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANP256650                                             | 70    | /  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANP256660                                             | 70    | /  | /                      |                       |                            |                     |                    |                    |                    |
|                      | ANP256680                                             | 70    | /  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANP256860                                             | 70    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANP2588100                                            | 70    | /  |                        | /                     |                            |                     |                    |                    |                    |
|                      | ANP258860                                             | 70    | /  | /                      | /                     |                            |                     |                    |                    |                    |
|                      | ANP258880                                             | 70    | /  | /                      | /                     |                            |                     |                    |                    |                    |
|                      | ANPS204425                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANPS204440                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANPS204460                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANPS204625                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANPS206625                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
| ANPS                 | ANPS206640                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
| 0                    | ANPS206650                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANPS206660                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANPS206680                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANPS208860                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | ANPS208880                                            | 71    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | AB45C                                                 | 72    | k  |                        |                       |                            |                     |                    |                    |                    |
| AB45C<br>EBC<br>EBCR | EBC100/2,5 bis<br>EBC250/2,5<br>in 10 mm<br>Schritten | 72    | k  |                        |                       |                            |                     |                    |                    |                    |
|                      | TA9Z                                                  | 73    | /  |                        |                       | 1                          |                     |                    |                    |                    |
| TA                   | TA10Z                                                 | 73    | /  |                        |                       | 1                          |                     |                    |                    |                    |
|                      | KNAG90-B                                              | 74    | 1  | ✓                      |                       |                            |                     |                    |                    |                    |
|                      | KNAG130                                               | 74    | /  | /                      |                       |                            |                     |                    |                    |                    |
| KNAG                 | KNAG170                                               | 74    | /  | ✓                      |                       |                            |                     |                    |                    |                    |
|                      | KNAG210-B                                             | 74    | /  | /                      |                       |                            |                     |                    |                    |                    |
|                      | MAXIMUS120                                            | 76    | /  |                        |                       |                            | /                   |                    |                    |                    |
| MAXIMUS™             | MAXIMUS140                                            | 76    | /  |                        |                       |                            | <i>'</i>            |                    |                    |                    |
|                      | MAXIMUS160                                            | 76    | /  |                        |                       |                            | <i>'</i>            |                    |                    |                    |

k = konstruktiv

# Winkelverbinder - AA





AA Winkelverbinder werden aus 2,0 mm dickem, feuerverzinktem Stahlblech hergestellt und sind mit einer kleinen Rippenverstärkung versehen.

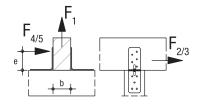
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m $^2$  beidseitig – entsprechend einer Zinkschichtdicke von ca. 20  $\mu$ m.

**Befestigung:** Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.



# Produktabmessungen


Tabelle 1

| Art. Nr. |    | Abmessu | ıng [mm] |     | Anzahl Löcher Ø5 | [mm] in Schenkel |
|----------|----|---------|----------|-----|------------------|------------------|
|          | А  | В       | С        | t   | А                | В                |
| AA60280  | 83 | 62      | 40       | 2,0 | 5                | 5                |

# Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN] 2 Winkel pro Anschluss |                                          |                                                                                               |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|
|                   | Vollausnagelung                                                       |                                          |                                                                                               |  |  |  |  |
|                   | $R_{_{1,k}}$                                                          | R <sub>2/3,k</sub>                       | R <sub>4/5,k</sub> 1)                                                                         |  |  |  |  |
| CNA4,0x40         | <u>min. von:</u><br>2,9; 2,9 / k <sub>mod</sub>                       | min. von:<br>4,1; 4,1 / k <sub>mod</sub> | min. von:<br>1,4; 1,3 / k <sub>mod</sub>                                                      |  |  |  |  |
| CNA4,0x60         | min. von:<br>4,5; 4,4 / k <sub>mod</sub>                              | min. von:<br>6,1; 6,0 / k <sub>mod</sub> | min. von:<br>2,2; 2,1 / k <sub>mod</sub>                                                      |  |  |  |  |
|                   | CNA4,0x40                                                             | CNA4,0x40                                | 2 Winkel pro Anschlus   Vollausnagelung   R <sub>1,k</sub>   R <sub>2/3,k</sub>     CNA4,0x40 |  |  |  |  |



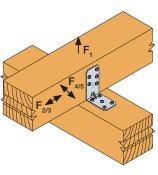
### Beispiel

Balken 80 x 100 mm an Balken, gewählter Verbinder: 2 Stück AA60280 Vollausnagelung mit CNA4,0x40 Kammnägeln.

# Belastung:

$$F_{1,d} = 1,0$$
 kN;  $F_{4/5,d} = 0,4$  kN;  $e = 120$  mm; NKL. 2; KLED: mittel  $\Rightarrow$   $k_{mod} = 0,8$ 

Werte aus der Tabelle


$$R_{1.d} = 2.9 \times 0.8 / 1.3$$

= 1,8 kN oder  $(2,9 / 0,8) \times 0,8 / 1,3 = 2,2 \Rightarrow$  nicht maßgebend

$$R_{4/5,d} = 1,4 \times 0,8 / 1,3$$

= **0,9 kN** oder  $(1,3 / 0,8) \times 0,8 / 1,3 = 1,0 \Rightarrow$  nicht maßgebend

Nachweis: 
$$\frac{1,0}{1,8} + \frac{0,4}{0,9} = 1,0 \le 1,0 \Rightarrow OK$$



AA60280

<sup>1)</sup> b = 80 und e = 120

# Winkelverbinder - AB55365 / AC35350 / AF90265





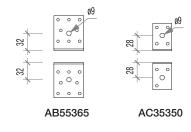
AB55365 / AC35350 / AF90265 Winkelverbinder werden für Holz / Holz oder Holz / Beton Anschlüsse in konstruktiven Bereichen eingesetzt. Für eine gleichmäßige Lasteinleitung werden zwei Winkel je Anschluss empfohlen.

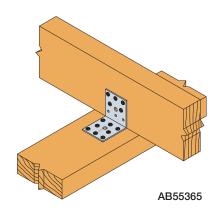
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

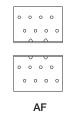
**Korrosionsschutz:**  $275 \text{ g/m}^2$  beidseitig – entsprechend einer Zinkschichtdicke von ca.  $20 \text{ }\mu\text{m}$ .

**Befestigung:** Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben







# Produktabmessungen

Anzahl Löcher Ø5 [mm] in Schenkel Art. Nr. Abmessung [mm] В C Α t Α В AB55365 65 55 2,5 8 8 AC35350 2,0 4 4 AF90265 2,0 8 8









# Winkelverbinder - AB70 / AB90 / AB105





AB70 / AB90 / AB105 Winkelverbinder sind für Anschlüsse in tragenden Holzkonstruktionen geeignet.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von

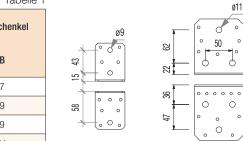
Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.



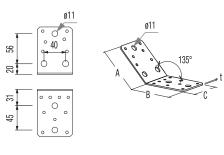




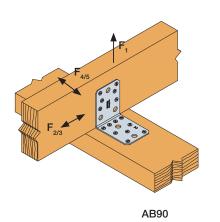


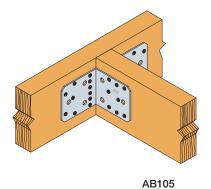

AB105

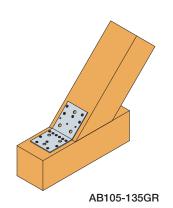



| Produktabm   | essungen  |
|--------------|-----------|
| TOGGINLADITI | Coourigon |

| Produktabme                | essun          | gen |    |     | Tabelle 1        |                  |
|----------------------------|----------------|-----|----|-----|------------------|------------------|
| Art. Nr.                   | Abmessung [mm] |     |    |     | Anzahl Löcher Ø5 | [mm] in Schenkel |
|                            | А              | В   | С  | t   | Α                | В                |
| AB70                       | 70             | 70  | 55 | 2,0 | 4                | 7                |
| AB90                       | 88             | 88  | 65 | 2,5 | 6                | 9                |
| AB90-135GR-B <sup>1)</sup> | 88             | 88  | 65 | 2,5 | 6                | 9                |
| AB105                      | 103            | 103 | 90 | 3,0 | 8                | 11               |
| AB105-135GR-B 1)           | 103            | 103 | 90 | 3,0 | 8                | 11               |


1) ohne ETA





AB70



AB90 AB90-135GR







# Winkelverbinder – AB70 / AB90 / AB105



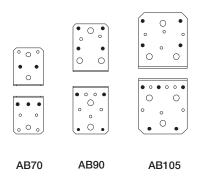
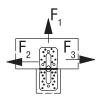

# Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN] 2 Winkel – Anschluss zwei sich kreuzende Hölzer |                    |                                  |                                                             |                    |                                                             |  |  |  |
|----------|-------------------|------------------------------------------------------------------------------------------------|--------------------|----------------------------------|-------------------------------------------------------------|--------------------|-------------------------------------------------------------|--|--|--|
|          |                   |                                                                                                | Teilausnagelung    |                                  | Vollausnagelung                                             |                    |                                                             |  |  |  |
|          |                   | R <sub>1,k</sub>                                                                               | R <sub>2/3,k</sub> | R <sub>4/5,k</sub> <sup>1)</sup> | R <sub>1,k</sub>                                            | R <sub>2/3,k</sub> | R <sub>4/5,k</sub> 1)                                       |  |  |  |
| AB70     | CNA4,0x40         | 3,9 / k <sub>mod</sub> 0,3                                                                     | 3,8                | 1,6 / k <sub>mod</sub> 0,3       | 3,9 / k <sub>mod</sub> 0,3                                  | 5,3                | 1,6 / k <sub>mod</sub> 0,3                                  |  |  |  |
| ADOO     | CNA4,0x40         | 3,1 / k <sub>mod</sub> 0,3                                                                     | 5,5                | 1,4 / k <sub>mod</sub> 0,5       | 5,1 / k <sub>mod</sub> <sup>0,3</sup>                       | 7,1                | 2,2 / k <sub>mod</sub> <sup>0,3</sup>                       |  |  |  |
| AB90     | CNA4,0x60         | 4,4 / k <sub>mod</sub> 0,3                                                                     | 7,3                | 1,9 / k <sub>mod</sub> 0,3       | min. von:<br>7,5/k <sub>mod</sub> 0,3; 6,9/k <sub>mod</sub> | 10,4               | min. von:<br>3,1/k <sub>mod</sub> 0,5; 2,9/k <sub>mod</sub> |  |  |  |
| APIOE    | CNA4,0x40         | 5,4 / k <sub>mod</sub> 0,3                                                                     | 4,0                | 2,4 / k <sub>mod</sub> 0,5       | 8,5 / k <sub>mod</sub> 0,3                                  | 13,3               | 3,8 / k <sub>mod</sub> 0,3                                  |  |  |  |
| AB105    | CNA4,0x60         | 7,4 / k <sub>mod</sub> <sup>0,3</sup>                                                          | 7,5                | 3,3 / k <sub>mod</sub> 0,4       | 12,7 / k <sub>mod</sub> <sup>0,3</sup>                      | 18,1               | 5,4 / k <sub>mod</sub> 0,3                                  |  |  |  |


<sup>1)</sup> b = 80 und e = 120

# Nagelbilder zur Teilausnagelung.



# Anwendungshinweis:

Werden bei einer Vollausnagelung alle Nagellöcher verwendet, wird kein Nagelbild gezeigt.





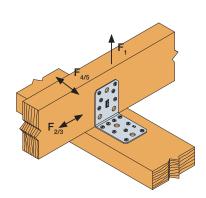
# Beispiel

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Pfette 80 x 160 mm an Balken, gewählter Verbinder: 2 Stück AB90 Vollausnagelung mit CNA4,0x60 Kammnägeln.

# Belastung:

$$F_{1,d} = 4,1$$
 kN;  $F_{2/3,d} = 3,4$  kN;  $e = 120$  mm, NKL. 2; KLED: mittel  $k_{mod} \Rightarrow 0,8$ 


Werte aus der Tabelle

 $R_{1d} = (7.5 / 0.8^{0.3}) \times 0.8 / 1.3 = 4.9 \text{ kN}$ 

 $R_{\rm 1.d} = {\rm oder} \; (6.9 \; / \; 0.8) \; x \; 0.8 \; / \; 1.3 = 5.3 \; kN \Longrightarrow {\rm nicht} \; {\rm maßgebend}$ 

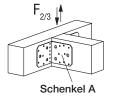
 $R_{2/3,d} = 10,4 \times 0,8 / 1,3 = 6,4 \text{ kN}$ 

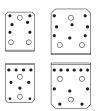
Nachweis:  $\left(\frac{4,1}{4,9}\right)^2 + \left(\frac{3,4}{6,4}\right)^2 = 0.98 < 1.0 \Rightarrow OK$ 



# Winkelverbinder - AB70 / AB90 / AB105




# Charakteristische Werte der Tragfähigkeit


| Tabelle |
|---------|
|---------|

| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss Nebenträger an Hauptträger |  |  |  |
|----------|-------------------|---------------------------------------------------------------------------------------------------|--|--|--|
|          |                   | R <sub>2/3,k</sub>                                                                                |  |  |  |
| AB90     | CNA4,0x40         | 7,2                                                                                               |  |  |  |
|          | CNA4,0x60         | 10,2                                                                                              |  |  |  |
| AB105    | CNA4,0x40         | 13,3                                                                                              |  |  |  |
| ADIUS    | CNA4,0x60         | 18,1                                                                                              |  |  |  |

# Nagelbilder zu Tabelle 3

### Schenkel A





Schenkel B AB90 AB105

# Charakteristische Werte der Tragfähigkeit

| Ta | be | ماا  |   |
|----|----|------|---|
| ıα | иe | IIE. | 4 |

| Art. Nr. | Verbindungsmittel |                             | gfähigkeit [kN]<br>an Stütze              |                        |
|----------|-------------------|-----------------------------|-------------------------------------------|------------------------|
|          |                   | R <sub>1,k</sub>            |                                           | R <sub>2,k</sub>       |
|          |                   | gerichteter<br>Schenkel     | gerichteter<br>Schenkel                   |                        |
| AROO     | CNA4,0x40         | 4,0 / k <sub>mod</sub> 0,5  | 5,2 / k <sub>mod</sub> 0,55               | 0,7 / k <sub>mod</sub> |
| AB90     | CNA4,0x60         | T,O / R <sub>mod</sub>      | 3,27 K <sub>mod</sub>                     |                        |
| AB105    | CNA4,0x40         | 8,1 / k <sub>mod</sub> 0,75 | min. von:<br>10,0; 9,8 / k <sub>mod</sub> | 1,4 / k <sub>mod</sub> |
| ADTUS    | CNA4,0x60         | 8,1 / k <sub>mod</sub> 0,75 | 9,4 / k <sub>mod</sub> 0,6                | 1,4 / k <sub>mod</sub> |

# Nagelbilder zu Tabelle 4

### Schenkel A



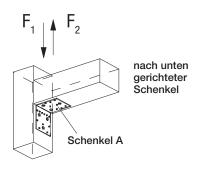


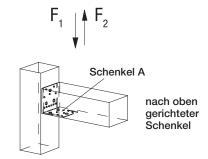
Schenkel B
AB90 AB105

# Beispiel

Riegel an Stütze, gewählter Verbinder: 1 Stück AB105 mit nach oben gerichtetem Schenkel.

Ausnagelung gem. Nagelbild mit CNA4,0x40 Kammnägeln.


### Belastung:


$$\rm F_{1,d} = 5,6~kN$$
 bzw.  $\rm F_{2,d} = 1,0~kN,~NKL.~2~und~KLED:~mittel \Longrightarrow k_{mod} = 0,8$ 

$$R_{1,d} = (8,1 / 0,8^{0.75}) \times 0,8 / 1,3 = 5,9 \text{ kN}$$
  
 $R_{2,d} = 1,4 / 0,8 \times 0,8 / 1,3 = 1,08 \text{ kN}$ 

Nachweis: 
$$\frac{5,6}{5,9} = 0.95 < 1.0 \Rightarrow OK$$

bzw. 
$$\frac{1,0}{1,08} = 0,93 < 1,0 \Rightarrow OK$$





# Winkelverbinder **SC2P** – 2-teiliger Schubwinkel







Einen statisch relevanten Anschluss an der Schmalseite eines Kantholzes herzustellen ist hinsichtlich der einzuhaltenden Randabstände nicht einfach. Bei einem Schwellenanschluss kommen erschwerend die Höhenausgleichsschicht sowie eine davorliegende Beplankung dazu. Passend zu den zweiteiligen Zugankern wird mit dem neuen zweiteiligen Schubwinkel SC2P dieses Problem sicher gelöst. Der SC2P besteht aus zwei unterschiedlichen Winkelverbindern, von denen ein Winkel werkseitig vormontiert wird und der zweite Winkel auf der Baustelle mit dem Ersten verbunden

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von ca. 20 μm.

**Befestigung:** Die Befestigung des SC2P-H180 erfolgt werkseitig mit CNA4,0x $\ell$ Kammnägeln. Der SC2P-V100 wird nach dem Versetzen der Wandtafel mit einer Holzschraube Ø6x100 und vier JT2-3-5,5x25 Bohrschrauben mit dem SC2P-H180 verbunden. Der Anschluss am Beton kann wahlweise mit einem oder zwei Ø10 Ankerbolzen ausgeführt werden. Der Anschluss am Holz erfolgt mit CNA4,0x $\ell$ Kammnägeln oder CSA5,0xl Schrauben.

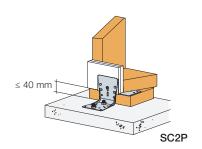


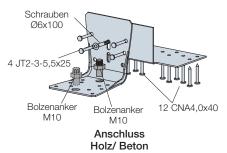
# Produktabmessungen

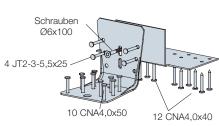
|                              | Trodaktasinisesangen |                                                                                      |     |            |     |                  |                  |    |  |  |  |  |
|------------------------------|----------------------|--------------------------------------------------------------------------------------|-----|------------|-----|------------------|------------------|----|--|--|--|--|
|                              | Art. Nr.             |                                                                                      | Abr | nessung [n | nm] | Anzahl Löcher Ø5 | [mm] in Schenkel |    |  |  |  |  |
|                              |                      | А                                                                                    | В   | С          | D   | t                | А                | В  |  |  |  |  |
|                              | SC2P-1 1)            | Satz bestehend aus: SC2P-V100, SC2P-H180 und 4 passenden Schrauben EJ0T JT2-3-5,5x25 |     |            |     |                  |                  |    |  |  |  |  |
| SC2P-V100 103 103 90 - 2,0 - |                      |                                                                                      |     |            |     | _                | 10               |    |  |  |  |  |
|                              | SC2P-H180            | 57                                                                                   | 82  | 180        | 95  | 2,0              | _                | 12 |  |  |  |  |



Tabelle 1


Tabelle 2


| 50  |      | _   |
|-----|------|-----|
| ~27 |      | ø12 |
| 09  |      |     |
| -   | 10 O | - ] |


SC2P-V100

# Charakteristische Werte der Tragfähigkeit

| Art. Nr. | Verbindungsmittel am Wandelement und untereinander  Verbindungsmittel am Wandelement und untereinander |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                        |                                          |
|----------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|------------------------------------------|
|          |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R <sub>2/3,k</sub>      | $R_{4,k}$              | R <sub>5,k</sub>                         |
|          | 10 CNA4,0x50                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,8 / k <sub>mod</sub>  | 6,4 / k <sub>mod</sub> | min. von:<br>5,6; 5,4 / k <sub>mod</sub> |
|          | 1 Bolzen M10                                                                                           | 12 CNA4,0x40<br>1 Holzschraube Ø6x100<br>4 EJOT JT2-3-5,5x25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,8 / k <sub>mod</sub>  | 0.471                  | E A / la                                 |
| SC2P-1   | 2 Bolzen M10                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,4 / k <sub>mod</sub> | 6,4 / k <sub>mod</sub> | 5,4 / k <sub>mod</sub>                   |
|          | Pole                                                                                                   | onfolktoren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                       | -                      | _                                        |
|          | BOIZ                                                                                                   | enfaktoren $egin{cases} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ | 1,12                    | 1                      | 1                                        |







**Anschluss** Holz/Holz

# Winkelverbinder - Schubwinkel AB / BNV

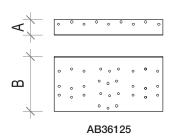


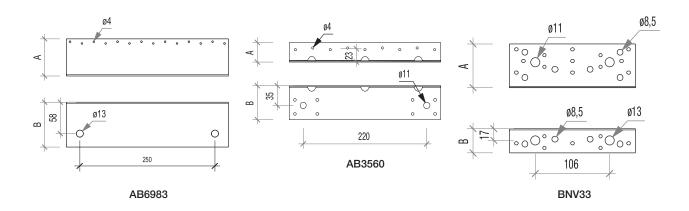


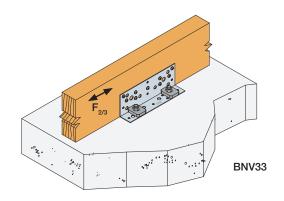
Schubwinkel sind in erster Linie zur Aufnahme von horizontalen Schubkräften bei Wandtafeln, Aussteifungshölzern und Verblockungen vorgesehen. Je nach Ausführung sind sie für Holz / Holz- Konstruktionen oder Verbindungen von Holz an Beton geeignet.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Tabelle 1


 $\textbf{Korrosionsschutz:}\ 275\ \text{g/m}^2\ \text{beidseitig}-\text{entsprechend einer}\ \text{Zinkschichtdicke}\ \text{von}$ 


Befestigung: Der Anschluss erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Zur Befestigung auf Beton werden Ø12 mm Ankerbolzen, ggf. mit US40x40x10 Unterlegscheibe verwendet.



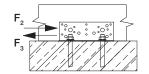

# Produktabmessungen

| Art. Nr. |    | Abmessu | ung [mm] |     | Anzahl Löcher Ø5 | [mm] in Schenkel |
|----------|----|---------|----------|-----|------------------|------------------|
|          | A  | В       | С        | t   | А                | В                |
| AB36125  | 36 | 125     | 247      | 2,0 | 9                | 30               |
| AB6983   | 69 | 83      | 300      | 2,5 | -                | _                |
| AB3560   | 35 | 60      | 270      | 1,5 | _                | 8                |
| BNV33    | 63 | 35      | 180      | 1,5 | 7                | 13               |





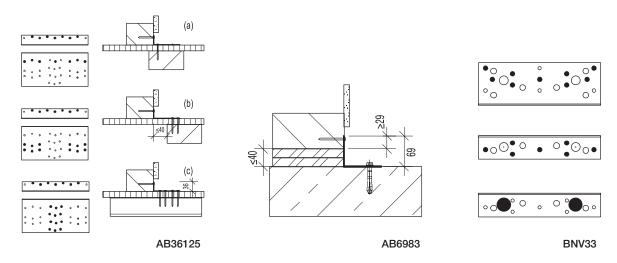



# Winkelverbinder - Schubwinkel AB / BNV



# Charakteristische Werte der Tragfähigkeit

Tabelle 2


| Art. Nr. | Verbindungsmittel | Charakteristische Wert<br>1 Winkel pr | Bolzen-<br>faktor                                 |                         |
|----------|-------------------|---------------------------------------|---------------------------------------------------|-------------------------|
|          |                   | Holz an Holz                          | Holz an Beton                                     |                         |
|          |                   | R <sub>2/3,k</sub>                    | R <sub>2/3,k</sub>                                | <b>k</b> <sub>lat</sub> |
| AB36125  | CNA4,0x40         | 10,3                                  | _                                                 | -                       |
| AB6983   | CNA3,1x40         | _                                     | min. von:<br>13,1; 16,0 / k <sub>mod</sub>        | 0,53x2                  |
| BNV33    | CNA4,0x40         | 10,7                                  | <u>min. von:</u><br>10,7; 10,1 / k <sub>mod</sub> | 0,56x2                  |





# Nagelbilder gemäß ETA-06/0106

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.



# Charakteristische Werte der Tragfähigkeit

Tabelle 3

| Art. Nr. | Verbindungsmittel |            |            |            | Charakteris                                                     | tische Werte der Tragfäh                                              | nigkeit [kN] <sup>1)</sup> 1 Winkel pr                              | o Anschluss                                                      |
|----------|-------------------|------------|------------|------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|
|          | Schenkel A        |            | Schenkel B |            |                                                                 |                                                                       |                                                                     |                                                                  |
|          | Anzahl            | Тур        | Anzahl     | Тур        | $R_{t,k}$                                                       | R <sub>2/3,k</sub>                                                    | $R_{4,k}$                                                           | $R_{5,k}$                                                        |
| AB3560   | 9                 | CNA 3,1x60 | 8          | CSA 5,0x25 | min. von:<br>3,6 / k <sub>mod</sub> ; 2,6 x R <sub>ax.k-B</sub> | min. von:<br>7,42 x R <sub>lat.k-A</sub> ; 7,1 x R <sub>lat.k-B</sub> | min. von:<br>6,5 / k <sub>mod</sub> ; 9,4; 8 x R <sub>lat.k-B</sub> | min. von:<br>4,2 / k <sub>mod</sub> ; 2,34 x R <sub>ax,k-A</sub> |

1) Bei Anschlüssen durch Zwischenschichten (Beplankungen) können verminderte Tragfähigkeiten der Verbindungsmittel maßgeblich werden.

R<sub>lat.k-A</sub> = Abscherwerte der Verbindungsmittel in Schenkel A

R<sub>lat.k-B</sub> = Abscherwerte der Verbindungsmittel in Schenkel B

R<sub>ax.k-A</sub> = Auszugswerte der Verbindungsmittel in Schenkel A

R<sub>ax.k-B</sub> = Auszugswerte der Verbindungsmittel in Schenkel B



# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

# Winkelverbinder - ABD





ABD45100 Winkelverbinder sind durch die variablen Ausnagelungsmöglichkeiten vielseitig einsetzbar. Vor allem an Beton, in Verbindung mit der U-Scheibe US40/50/10 und nur einem Bolzen Ø12 mm, sind die Winkel sehr leistungsfähig.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

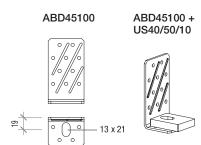
Tabelle 1

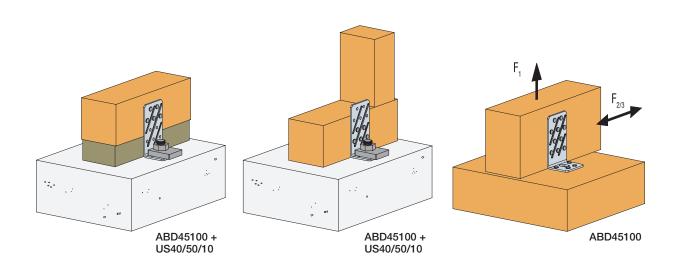
Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von

Befestigung: Der Anschluss erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. An Stahl oder Beton erfolgt die Befestigung mit einem Bolzen M12.









ETA-06/0106 DoP-e06/0106

# Produktabmessungen

| _ |                 |     |         |          |      |                  |                  |  |  |  |
|---|-----------------|-----|---------|----------|------|------------------|------------------|--|--|--|
|   | Art. Nr.        |     | Abmessu | ıng [mm] |      | Anzahl Löcher Ø5 | [mm] in Schenkel |  |  |  |
|   |                 | A   | В       | С        | t    | А                | В                |  |  |  |
| ſ | ABD45100        | 100 | 45      | 55       | 3,0  | 10               | 4                |  |  |  |
|   | US40/50/10-B 1) | 40  | 50      | _        | 10,0 | 1 Langloch       | 13,5 x 25        |  |  |  |

1) Unterlegscheibe siehe im Kapitel Verbindungsmittel





# Winkelverbinder - ABD



# Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr.     | Nagelbild | Charakteristische Werte der Tragfähigkeit [kN] 2 Winkel – Anschluss zwei sich kreuzende Hölzer |                         |                         |                    |           |           |  |  |
|--------------|-----------|------------------------------------------------------------------------------------------------|-------------------------|-------------------------|--------------------|-----------|-----------|--|--|
|              |           |                                                                                                | R <sub>1,k</sub>        |                         | R <sub>2/3,k</sub> |           |           |  |  |
|              |           |                                                                                                | Verbindungsmittel       |                         |                    |           |           |  |  |
|              |           | CNA4,0x40                                                                                      | CNA4,0x50               | CNA4,0x60               | CNA4,0x40          | CNA4,0x50 | CNA4,0x60 |  |  |
|              | 1         |                                                                                                | 4,9                     | 4,9 5,8                 | 7,1                | 8,9       | 10,2      |  |  |
| ABD45100     | 2         | 3,9                                                                                            |                         |                         | 6,2                | 7,5       | 8,1       |  |  |
|              | 3         |                                                                                                |                         |                         | 3,8                | 4,6       | 4,9       |  |  |
| ABD45100     | 4         |                                                                                                |                         |                         | 6,3                | 7,5       | 8,6       |  |  |
| +            | 5         | 16,2 / k <sub>mod</sub>                                                                        | 16,2 / k <sub>mod</sub> | 16,2 / k <sub>mod</sub> | 5,2                | 6,1       | 6,7       |  |  |
| US40/50/10-B | 6         |                                                                                                |                         |                         | 1,7                | 2,1       | 2,4       |  |  |

Sind die anzuschließenden Bauteile gegen Verdrehen gesichert, z.B. Wandtafeln, kann bei Verwendung von einem Winkel mit den halben Werten der Tabelle 2

# Ausnagelungsbilder zu Tabelle 2





# Die Mindestbolzentragfähigkeit errechnet sich aus:

 $R_{bolt.axial} = F_{1,d} \times 1,65$  $R_{bolt.axial} = F_{2,d} \times 0,4$  $R_{\text{bolt.lat}} = F_{2,d}$ 

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

 $R_{bolt.axial}$  = Auszugkraft der Bolzen R<sub>bolt.lat</sub> = Abscherkraft der Bolzen

# Winkelverbinder-Schallschutzwinkel - ABAI105





ein nahezu schallübertragungsfreier Anschluss der Holzbauteile ermöglicht. Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Tabelle 1

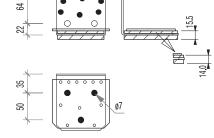
Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von

ABAl105 ist ein Winkelverbinder für statisch tragende Verbindungen zwischen Wand- und Deckenelementen aus Brettsperrholz, die durch ein 12 mm dickes Schalldämmlager getrennt sind. Durch die besondere Konstruktion des ABAI wird

Befestigung: ABAI105 werden im vertikalen Schenkel mit 8 x CNA4,0x60 Kammnägeln oder 8 x CSA5,0x50 Schrauben und im horizontalen Schenkel mit 3 x SDS25xxx Sonderschrauben befestigt. Zur regelrechten Montage und Vorspannung der ABAI Winkel muss die Montageschablone MOABAI verwendet werden.





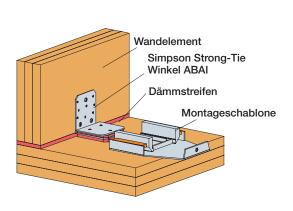


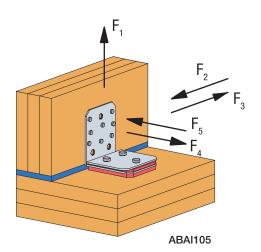

ETA-06/0106 DoP-e06/0106

# Produktabmessungen

| Art. Nr.          | Abmessung [mm]   |          |    |                         |                   |    | Anzahl Löcher Ø5 | [mm] in Schenkel |   |  |
|-------------------|------------------|----------|----|-------------------------|-------------------|----|------------------|------------------|---|--|
|                   | Α                | В        | С  | D                       | Е                 | t, | t <sub>2</sub>   | A                | В |  |
| ABAI105           | 103              | 103      | 90 | 106                     | 8                 | 3  | 4,0              | 8                | _ |  |
| MOABAI            | Montageschablone |          |    |                         |                   |    |                  |                  |   |  |
| Sonderschraube 1) | Abmessung [mm]   |          |    | Mindestdeckendicke [mm] |                   |    | [mm]             | VE = 100 St.     |   |  |
| SDS25412MB        | 6                | 6,0 x 11 | 4  |                         | 100<br>110<br>140 |    |                  | VE = 100 St.     |   |  |
| SDS25500MB        | 6                | 5,0 x 12 | 7  |                         |                   |    |                  | VE = 100 St.     |   |  |
| SDS25600MB        | 6                | 6,0 x 15 | 2  |                         |                   |    |                  | VE = 100 St.     |   |  |

ABAI105




# Anwendungshinweis:

Damit eine wirksame Schalldämmung erreicht werden kann, ist es notwendig den ABAl105 Winkelverbinder mit einer definierten Vorspannung einzubauen.

Mit der Montageschablone MOABAI wird eine regelrechte Montage gewährleistet, bei der die Dämmlagen auf das notwendige Maß komprimiert werden.





<sup>1)</sup> Passender Bit SDSD3/8-RB (bitte extra bestellen)

# .

# Winkelverbinder-Schallschutzwinkel - ABAI105

# SIMPSON Strong-Tie

# Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Lastrichtung                                          |                        |                        | 05 bei einer einseitigen Verbindung zwischen Brettsperrholzwänden (CLT)<br>Decken mit einem 12 mm dicken SIT Schalldämmlager dazwischen |                        |  |  |  |  |
|-------------------------------------------------------|------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
|                                                       | F <sub>1</sub>         | $F_1$ $F_2/F_3$        |                                                                                                                                         | F <sub>5</sub>         |  |  |  |  |
| Charakteristische Tragfähigkeit R <sub>i,k</sub> [kN] | 2,0 / k <sub>mod</sub> | 2,0 / k <sub>mod</sub> | 3,3 / k <sub>mod</sub>                                                                                                                  | 2,3 / k <sub>mod</sub> |  |  |  |  |
| Verschiebungsmodul ks [kN/mm]                         | 0,8                    | 0,68                   | 1,16                                                                                                                                    | 0,8                    |  |  |  |  |

# Bei mehrachsiger Beanspruchung wird der Nachweis folgendermaßen geführt:

$$\sqrt{\left|\frac{F_{1,d}}{R_{1,d}}\right| + \frac{F_{4/5,d}}{R_{4/5,d}}}\right|^2 + \left|\frac{F_{2/3,d}}{R_{2/3,d}}\right|^2} \le 1$$

# Beispiel:

Wandanschluss mit einer resultierenden abhebenden Last  $\rm F_{1,d}=0.8~kN/m$  und einer Längskraft in der Wand  $\rm F_{2,d}=1.2~kN/m$ , NKL2 KLED: kurz;  $\rm k_{mod}=0.9$ .

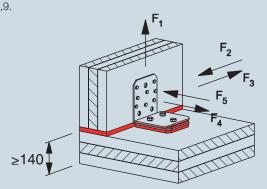
Gewählt: ABAI105 im Abstand von 65 cm

# Belastung je Winkel:

 $F_{1,d} = 0.8 \text{ kN/m} \times 0.65 \text{ m} = 0.52 \text{ kN}$ 

 $F_{2,d} = 1,2 \text{ kN/m} \times 0,65 \text{ m} = 0,78 \text{ kN}$ 

 $R_{1,d} = 2.0 / 0.9 \times 0.9 / 1.3 = 1.5 \text{ kN}$ 


 $R_{2,d} = 2.0 / 0.9 \times 0.9 / 1.3 = 1.5 \text{ kN}$ 

# Nachweis:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

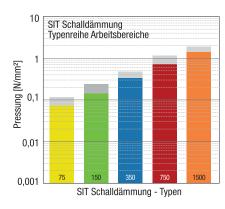
$$\sqrt{\left|\frac{F_{1,d}}{R_{1,d}}\right|^2 + \left|\frac{F_{2,d}}{R_{2,d}}\right|^2} = \sqrt{\left|\frac{0.52}{1.5}\right|^2 + \left|\frac{0.78}{1.5}\right|^2} = 0.63 < 1.0 \Rightarrow OK$$

Weitere Nachweise zur Statik und des Schallschutzes sowie zugehörige Details finden Sie in der Dokumentation auf unserer Website **strongtie.de** 



# Schallschutz - SIT Schalldämmlager






SIT Schalldämmlager bieten einen wirksamen Schutz vor Schwingungen und Erschütterungen. Diese high-tech PUR Elastomere können als flächige Matte zur Entkoppelung zwischen den Bauteilen eingesetzt werden, als Zuschnitt entsprechend der jeweiligen Bauteilgeometrie oder auch als individuell gefertigtes Formteil.

SIT Schalldämmlager ist ein geschlossenzelliges Elastomer und besteht aus einem speziellen Polyetherurethan. Dank seiner Struktur nimmt dieser Werkstoff nahezu keine Flüssigkeiten auf und kann somit auch im drückenden Grundwasser eingesetzt werden.

Aufgrund seiner hervorragenden dynamischen Eigenschaften ist dieser Werkstoff auch für höchst anspruchsvolle Anwendungen geeignet.

Wir bieten Ihnen 5 Standardmaterialien und die Möglichkeit, Sondertypen zu produzieren:



Ab Lager sind 5 verschiedene SIT Typen in Kundenwunschbreite bis 500 mm kurzfristig lieferbar.

Werkstoff geschlo

geschlossenzelliges Polyetherurethan

Eigenschaft

\*

Feder

Lieferformen Dicke:

12,5 mm

Breite: nach Kundenwunsch bis 500 mm

Länge: 1,0 m Stücke (ggf. 2,0 m Stücke)

Andere Typen, Dicken, größere Breiten, und Formen auf Anfrage.

Eigenschaften Tabelle 1

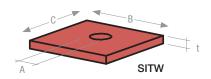
| Ligoriodilation                        |                                    |               |               |               |                |                 |
|----------------------------------------|------------------------------------|---------------|---------------|---------------|----------------|-----------------|
|                                        | 75                                 | 150           | 350           | 750           | 1500           |                 |
| Produkttyp                             | SIT75/12/LxB                       | SIT150/12/LxB | SIT350/12/LxB | SIT750/12/LxB | SIT1500/12/LxB | Prüfverfahren   |
| Farbe                                  | gelb                               | grün          | blau          | rot           | orange         | -               |
| Statische Dauerlast [N/mm²] 1)         | 0,075                              | 0,15          | 0,35          | 0,75          | 1,5            | -               |
| Dynamischer Lastbereich [N/mm²] 1)     | 0,12                               | 0,25          | 0,5           | 1,2           | 2              | -               |
| Lastspitzen [N/mm²] 1)                 | 2                                  | 3             | 4             | 6             | 8              |                 |
| Mechanischer Verlustfaktor 2)          | 0,06                               | 0,03          | 0,03          | 0,04          | 0,05           | DIN 53513 3)    |
| Statischer E-Modul [N/mm²] 2)          | 0,63                               | 1,25          | 2,53          | 5,21          | 9,21           | DIN 53513 3)    |
| Dynamischer E-Modul [N/mm²] 2)         | 0,92                               | 1,65          | 3,25          | 8,88          | 16,66          | DIN 53513 3)    |
| Statischer Schubmodul [N/mm²] 2)       | 0,16                               | 0,22          | 0,35          | 0,8           | 1,15           | DIN 53513 3)    |
| Dynamischer Schubmodul [N/mm²] 2)      | 0,27                               | 0,35          | 0,52          | 1,22          | 1,69           | DIN 53513 3)    |
| Stauchhärte bei 10% Verformung [N/mm²] | 0,083                              | 0,16          | 0,32          | 0,59          | 0,94           | -               |
| Druckverformungsrest [%]               | < 5                                | < 5           | < 5           | < 6           | < 8            | DIN ISO 1856    |
| Reißfestigkeit [N/mm²]                 | > 1,5                              | > 2,0         | > 3,5         | > 5,0         | > 7,0          | DIN 53455-6-4   |
| Reißdehnung [%]                        | > 500                              | > 500         | > 500         | > 500         | > 500          | DIN 53455-6-4   |
| Weiterreißfestigkeit [N/mm]            | > 1,6                              | > 2,1         | > 2,5         | > 4,3         | > 5,6          | DIN ISO 34-1/A  |
| Rückprallelastizität [%]               | 70                                 | 70            | 70            | 70            | 70             | DIN EN ISO 8307 |
| Spez. Durchgangswiderstand [Ω·cm]      | > 1011                             | > 1011        | > 1011        | > 1011        | > 1011         | DIN IEC 93      |
| Wärmeleitfähigkeit [W/(m·K)]           | 0,06                               | 0,075         | 0,09          | 0,1           | 0,11           | DIN 52612-1     |
| Einsatztemperatur [°C]                 | nsatztemperatur [°C] - 30 bis + 70 |               |               |               |                | -               |
| Temperaturspitze [°C]                  | 120                                |               |               |               |                | _               |
| Brandverhalten                         | Klasse E / EN 13501-1              |               |               |               |                | EN ISO 11925-1  |

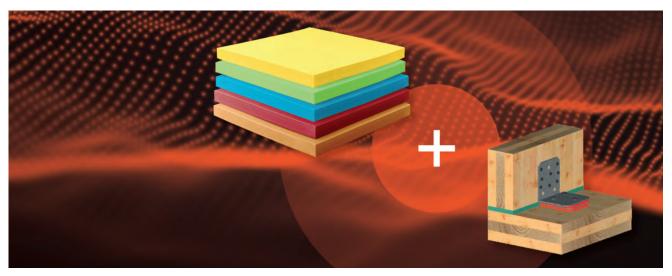
 $<sup>^{1)}</sup>$  Werte gelten für Formfaktor q=3

<sup>&</sup>lt;sup>2)</sup> gemessen an der Obergrenze des statischen Einsatzbereichs

<sup>&</sup>lt;sup>3)</sup> Prüfverfahren in Anlehnung an die jeweils angegebene Norm

# Schallschutz – SITW Unterlegscheiben




SITW Unterlegscheiben werden mit SIT Dämmstreifen kombiniert, um ein Hochleistungssystem in den CLT-Gebäuden zu schaffen, die eine hervorragende schalldämmende Leistung erbringen müssen.

SITW werden z.B. unter ABR255 Winkeln angeordnet, oder unter den Zugankern HTT, bzw. AKR, bei Zuglasten.

| Art. Nr.    | Abmessungen [mm] |     |     |   |  |  |
|-------------|------------------|-----|-----|---|--|--|
|             | Α                | В   | С   | t |  |  |
| SITW70/70   | Ø ~12            | 70  | 70  | 6 |  |  |
| SITW70/90   | Ø ~16            | 70  | 90  | 6 |  |  |
| SITW100/265 | -                | 100 | 265 | 6 |  |  |





# Schallschutz bei Brettsperrholzkonstruktionen (Flankenübertragung) SIT-Schalldämmlager und ABAI105 Schallschutzwinkel

Mit dem Werkstoff Brettsperrholz erzielt man für ein Wohn- oder Geschäftsgebäude eine hochwertige und zukunftsorientierte Bauweise. Neben den vielen statischen und bauphysikalischen Vorteilen die die Brettsperrholzbauweise bietet, gibt es im Schallschutzbereich einen generellen Schwachpunkt: Die Flankenübertragung am Decken-Wand-Stoß. Dieses Problem ist zwar bei allen Bauweisen vorhanden, bei der Brettsperrholzbauweise ist dieser Effekt aus physikalischen Gründen jedoch besonders stark ausgeprägt. Zur Vermeidung der Flankenübertragung ist es naheliegend ein hochwirksames Schallschutzlager einzubauen. Es ist aber schwierig über diese Fuge horizontale Kräfte zu übertragen ohne durch Verbindungsmittel eine Schallbrücke zu erzeugen.

Eine vergleichbare schalltechnische Alternative kann mit einer auf Federschienen aufgebrachten Vorsatzschale an den Wänden erreicht werden. Rechnet man die die Kosten dieser beiden Möglichkeiten gegeneinander auf ist aufgrund des Wohnflächenverlusts die SIT-Schallschutz/ ABAl105-Schallschutzwinkel Ausführung klar die günstigere.

# SIT Schalldämmlager:

Geschäumtes Polyetherurethan in einer Dicke von 12,5 mm ist das ideale Material in Kombination mit Brettsperrholz um eine Wand-Deckenfuge zu trennen. Nicht geschäumtes Material ist nach bisherigem Kenntnisstand nahezu unwirksam und bei geringeren Dicken geht der positive Einfluss mit den einhergehenden Federlängen verloren. Größere Dicken hätten zwar keinen negativen Einfluss auf den Schallschutz, würden jedoch die Materialkosten und Verformungen erhöhen.

# ABAI105 Schallschutzwinkel:

Dieser Winkelverbinder besteht aus vier Komponenten: Einem Winkelverbinder ohne Rippe, einer oberseitigen Druckplatte und zwei Platten aus geschäumtem Polyetherurethan. Die Komponenten sind werkseitig passgenau miteinander verklebt und können auf der Baustelle ohne zusätzlichen Aufwand nach Einbauvorschrift direkt verarbeitet werden. Aufgrund der Anordnung der einzelnen Komponenten entsteht bei diesem Verbinder nach dem Einbau eine feste Verbindung zwischen Decke und oberer Druckplatte und zwischen Wand und Winkelverbinder ohne Rippe. Zwischen diesen Einheiten bestehen jedoch keine Berührungspunkte (außer über die Schalldämmplatten), sodass eine optimale schalltechnische Trennung gewährleistet ist.

# Anwendungshinweis:

Die Kombination von SIT Schalldämmlagern mit dem ABAl105 Schallschutzwinkel ist nicht nur schalltechnisch aufeinander abgestimmt, sondern betrifft auch das gemeinsame Tragverhalten.

Die Befestigung einer Wand erfolgt in der Regel unmittelbar nach dem Aufstellen im noch lastfreien Zustand. Steht eine Brettsperrholzwand auf einem SIT Schalldämmlager auf, drückt dieses beim späteren Auftreten der Volllasten ein. Nur mit ABAl105 Schallschutzwinkeln kann sichergestellt werden, dass neben einer wirksamen Schalldämmung keine ungewollten, nachteiligen Lastkonzentrationen auf die Winkelverbinder einwirken.

# Winkelverbinder - ABB





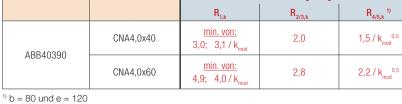

ABB40390 Winkelverbinder werden aus 3,0 mm dickem, feuerverzinktem Stahlblech hergestellt und sind für tragende Holzkonstruktionen geeignet.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.




# Produktabmessungen

Abmessung [mm] Anzahl Löcher Ø5 [mm] in Schenkel Art. Nr. Α В С В ABB40390 40 3,0 5 5

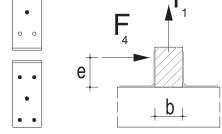

# Charakteristische Werte der Tragfähigkeit

Tabelle 1

| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel pro Anschlus<br>Vollausnagelung |                    |                            |  |  |
|----------|-------------------|--------------------------------------------------------------------------------------------|--------------------|----------------------------|--|--|
|          |                   | R <sub>1,k</sub>                                                                           | R <sub>2/3,k</sub> | R <sub>4/5,k</sub> 1)      |  |  |
| ABB40390 | CNA4,0x40         | min. von:<br>3,0; 3,1 / k <sub>mod</sub>                                                   | 2,0                | 1,5 / k <sub>mod</sub> 0,5 |  |  |
| ADD40390 | CNA4,0x60         | min. von:<br>4,9; 4,0 / k <sub>mod</sub>                                                   | 2,8                | 2,2 / k <sub>mod</sub> 0,5 |  |  |



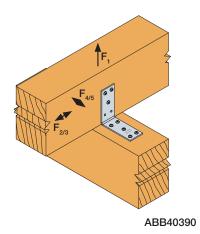




### Beispiel:

Balken 80 x 200 mm an Balken, gewählter Verbinder: 2 Stück ABB40390 Vollausnagelung mit CNA4,0x40

# Belastung:


 $F_{1,d} = 1,0$  kN;  $F_{4/5,d} = 0,4$  kN e = 120 mm, NKL. 2; KLED: mittel  $\Rightarrow$   $k_{mod} = 0,8$ 

# Werte aus der Tabelle

 $R_{1.d} = 3.0 \times 0.8 / 1.3 = 1.8 \text{ kN}$ 

 $R_{1,d}$  = 3,1 / 0,8 x 0,8 / 1,3 = 2,4 kN ⇒ nicht maßgebend  $R_{4/5,d}$  = (1,5 / 0,8<sup>0,5</sup>) x 0,8 / 1,3 = 1,03 kN

**Nachweis:**  $\frac{1.0}{1.8} + \frac{0.4}{1.03} = 0.94 \le 1.0 \Rightarrow OK$ 



#### Winkelverbinder-Betonwinkel - ABL / ABS





ABL/ABS Winkelverbinder können zur Befestigung von Holzbauteilen, Fenstern, Fassadenelementen auf oder an Beton eingesetzt werden. Die ABL Winkel haben zum Ausgleich von Montagetoleranzen ein Langloch und die ABS Winkel einen Schlitz im horizontalen Schenkel.

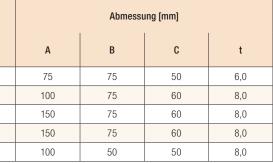
Material: Stahlsorte: S235 JR gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundumfeuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

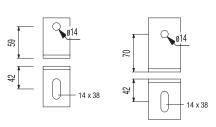
Befestigung: Der Anschluss erfolgt mit M10, M12 oder M16 Bolzen oder mit entsprechenden Holzschrauben.



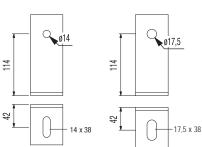
ABL10014G

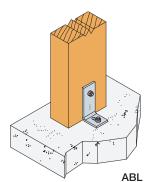

ABL15017G

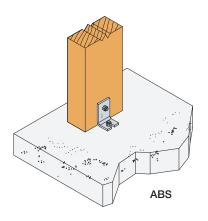



#### Produktabmessungen

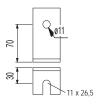
| r reda was r recodinger |                |    |    |     |  |  |  |  |
|-------------------------|----------------|----|----|-----|--|--|--|--|
| Art. Nr.                | Abmessung [mm] |    |    |     |  |  |  |  |
|                         | A              | В  | С  | t   |  |  |  |  |
| ABL7514G                | 75             | 75 | 50 | 6,0 |  |  |  |  |
| ABL10014G               | 100            | 75 | 60 | 8,0 |  |  |  |  |
| ABL15014G               | 150            | 75 | 60 | 8,0 |  |  |  |  |
| ABL15017G               | 150            | 75 | 60 | 8,0 |  |  |  |  |
| ABS10014G               | 100            | 50 | 50 | 8,0 |  |  |  |  |


#### Tabelle 1



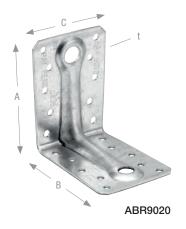


#### ABL7514G




#### ABL15014G








#### ABS10014G



#### Winkelverbinder - ABR / ABRL / ACR





ABR / ACR Winkelverbinder sind besonders für Anschlüsse geeignet, bei denen große Kräfte übertragen werden müssen. Die ABR sind mit Rippen versehen.

Material: Stahlsorte: S250 GD oder S350 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m $^2$  beidseitig – entsprechend einer Zinkschichtdicke von ca. 20  $\mu$ m.

Befestigung: Die Befestigung erfolgt mit CNA4,0xℓ Kammnägeln oder CSA5,0xℓ Schrauben. Viele Winkel können für tragende Konstruktionen mit Bolzen zur Befestigung von Holz an Stahl oder Beton verwendet werden.

≠

**PATENT** 

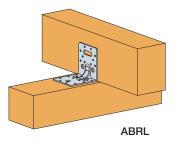




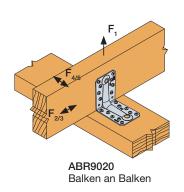


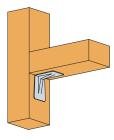




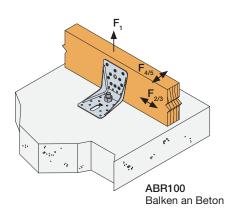

ETA-06/0106 DoP-e06/0106

Einige Typen


#### Produktabmessungen


| T T G G G T T G G G T T T |     |         |          | 1480110 1 |                  |                  |
|---------------------------|-----|---------|----------|-----------|------------------|------------------|
| Art. Nr.                  |     | Abmessu | ıng [mm] |           | Anzahl Löcher Ø5 | [mm] in Schenkel |
|                           | А   | В       | С        | t         | А                | В                |
| ABR70                     | 70  | 70      | 55       | 2,0       | 6                | 6                |
| ACR7015                   | 70  | 70      | 55       | 1,5       | 6                | 6                |
| ABR90                     | 90  | 90      | 65       | 2,5       | 10               | 10               |
| ABR9015                   | 89  | 89      | 60       | 1,5       | 10               | 10               |
| ABR9020                   | 88  | 88      | 65       | 2,0       | 10               | 10               |
| ACR9020                   | 88  | 88      | 65       | 2,0       | 10               | 10               |
| ABR98                     | 98  | 98      | 88       | 3,0       | 10               | 12               |
| ABRL98                    | 98  | 98      | 88       | 3,0       | 10               | 12               |
| ABR100                    | 103 | 103     | 90       | 2,0       | 10               | 14               |
| ABR105                    | 105 | 105     | 90       | 3,0       | 10               | 14               |
| ACR10520                  | 105 | 105     | 90       | 2,0       | 10               | 14               |

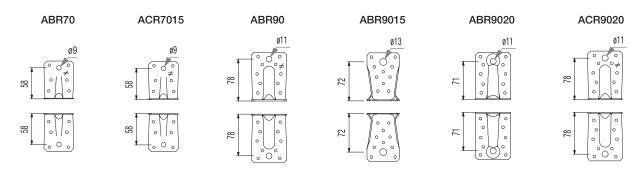


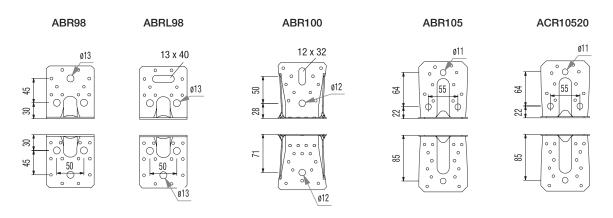









#### Winkelverbinder - ABR / ABRL / ACR



#### Positionen und Durchmesser der großen Bohrungen





#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss zwei sich kreuzende Hölzer |                                 |                             |     |     |                            |  |
|----------|-------------------|---------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-----|-----|----------------------------|--|
|          |                   |                                                                                                   | Teilausnagelung Vollausnagelung |                             |     |     |                            |  |
|          |                   | $egin{array}{ c c c c c c c c c c c c c c c c c c c$                                              |                                 |                             |     |     |                            |  |
| ABR70    | CNA4,0x40         | 2,9 / k <sub>mod</sub> 0,25                                                                       | 4,8                             | 2,3 / k <sub>mod</sub> 0,75 | 5,3 | 5,0 | 3,5 / k <sub>mod</sub> 0,4 |  |
| ACR7015  | CNA4,0x40         | _                                                                                                 | _                               | _                           | 8,9 | 7,3 | 3,5 / k <sub>mod</sub> 0,3 |  |

 $<sup>^{1)}</sup>$  b = 80 und e = 120

#### Ausnagelungsbilder zu Tabelle 2

| ABR70<br>Teilausnagelung | ABR70 / ACR7015<br>Vollausnagelung |
|--------------------------|------------------------------------|
|                          |                                    |
|                          |                                    |

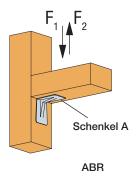
Winkelverbinder

#### Winkelverbinder - ABR / ABRL / ACR



#### Charakteristische Werte der Tragfähigkeit

Tabelle 3


| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss zwei sich kreuzende Hölzer |                    |                             |           |                    |                              |
|----------|-------------------|---------------------------------------------------------------------------------------------------|--------------------|-----------------------------|-----------|--------------------|------------------------------|
|          |                   |                                                                                                   | Teilausnagelung    |                             |           | Vollausnagelung    |                              |
|          |                   | $R_{t,k}$                                                                                         | R <sub>2/3,k</sub> | R <sub>4/5,k</sub> 1)       | $R_{t,k}$ | R <sub>2/3,k</sub> | R <sub>4/5,k</sub> 1)        |
| ABR90    | CNA4,0x40         | 5,3                                                                                               | 5,7                | 6,9 / k <sub>mod</sub> 0,5  | 7,9       | 9,2                | 9,0 / k <sub>mod</sub> 0,85  |
| ADDISO   | CNA4,0x60         | 8,8                                                                                               | 7,3                | 9,6 / k <sub>mod</sub> 0,75 | 13,3      | 11,8               | 10,4 / k <sub>mod</sub> 0,75 |
| ABR9015  | CSA5,0x40         | _                                                                                                 | _                  | _                           | 13,2      | 10,5               | 5,7 / k <sub>mod</sub> 0,5   |
| ADDOULD  | CNA4,0x60         | _                                                                                                 | _                  | _                           | 6,6       | 9,6                | _                            |
| ADDOOO   | CNA4,0x40         | 5,9                                                                                               | 6,5                | 5,5 / k <sub>mod</sub> 0,5  | 10,8      | 10,3               | 5,4 / k <sub>mod</sub> 0,75  |
| ABR9020  | CNA4,0x60         | 9,8                                                                                               | 8,1                | 6,5 / k <sub>mod</sub> 0,65 | 14,9      | 13,0               | 6,5 / k <sub>mod</sub> 0,65  |
| ACR9020  | CNA4,0x60         | -                                                                                                 | _                  | _                           | 13,3      | 11,9               | 9,0 / k <sub>mod</sub> 0,4   |

 $<sup>^{1)}</sup>$  b = 80 und e = 120

#### Charakteristische Werte der Tragfähigkeit

Tabelle 4

| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>1 Winkel unterhalb vom Riegel, Ausnagelung Riegel |           |  |  |  |
|----------|-------------------|-----------------------------------------------------------------------------------------------------|-----------|--|--|--|
|          |                   | $R_{_{1,k}}$                                                                                        | $R_{2,k}$ |  |  |  |
| ABR90    | CNA4,0x40         | 9                                                                                                   | 1,5       |  |  |  |
| Abh90    | CNA4,0x60         | 11                                                                                                  | 2,5       |  |  |  |
| ABR9020  | CNA4,0x40         | 7,7                                                                                                 | 1,5       |  |  |  |
| ADD9020  | CNA4,0x60         | 10,4                                                                                                | 2,5       |  |  |  |



#### Ausnagelungsbilder zu Tabelle 3 und 4

|      | ABR90 |        | ABR9015 |      | ABR902 | 20     | ACR9020    |
|------|-------|--------|---------|------|--------|--------|------------|
| Teil | Voll  | Riegel | Voll    | Teil | Voll   | Riegel | Voll       |
|      |       |        |         |      |        |        | Schenkel A |
|      |       |        |         |      |        |        | Schenkel B |

#### Winkelverbinder - ABR / ABRL / ACR



#### Charakteristische Werte der Tragfähigkeit

Tabelle 5

| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss zwei sich kreuzende Hölzer |                    |                       |                                                                            |                    |                       |  |
|----------|-------------------|---------------------------------------------------------------------------------------------------|--------------------|-----------------------|----------------------------------------------------------------------------|--------------------|-----------------------|--|
|          |                   |                                                                                                   | Teilausnagelung    |                       |                                                                            | Vollausnagelung    |                       |  |
|          |                   | $R_{1,k}$                                                                                         | R <sub>2/3,k</sub> | R <sub>4/5,k</sub> 1) | $R_{i,k}$                                                                  | R <sub>2/3,k</sub> | R <sub>4/5,k</sub> 1) |  |
| ABR98    | CNA4,0x40         | 7,0                                                                                               | 6,9                | 11,5                  | 11,8                                                                       | 13,7               | 13,3                  |  |
| ABRL98   | CNA4,0x60         | 10,8                                                                                              | 9,7                | 13,1                  | 19,7                                                                       | 19,8               | 14,0                  |  |
|          | CNA4,0x40         | _                                                                                                 | _                  | _                     | 11,7                                                                       | 12,8               | 3,4                   |  |
| ABR100   | CNA4,0x60         | _                                                                                                 | _                  | _                     | 19,7                                                                       | 16,7               | 4,2                   |  |
| ADRIUU   | CSA5,0x40         | -                                                                                                 | -                  | -                     | min. von:<br>26,7/ k <sub>mod</sub> <sup>0,2</sup> ; 27 / k <sub>mod</sub> | 20,3               | 4,2                   |  |

 $<sup>^{1)}</sup>$  b = 80 und e = 120

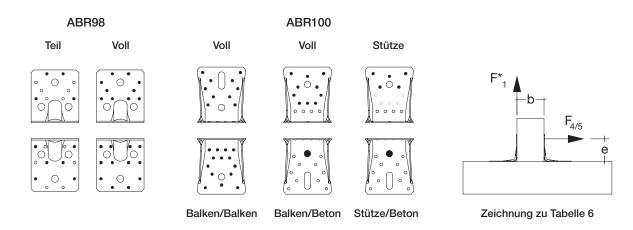

#### Charakteristische Werte der Tragfähigkeit

Tabelle 6

| , | Art. Nr. | Verbindungsmittel           | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss an Beton |                                 |      |      |     |                              |  |
|---|----------|-----------------------------|---------------------------------------------------------------------------------|---------------------------------|------|------|-----|------------------------------|--|
|   |          |                             |                                                                                 | Balken an Beton Stütze an Beton |      |      |     |                              |  |
|   |          |                             | $R_{1,k}$ $R_{2/3,k}$ $R_{4/5,k}$ $R_{1,k}$ $R_{1,k}$ $R_{2/3,k}$ $R_{4/5,k}$   |                                 |      |      |     |                              |  |
| , | ABR100   | CNA4,0x50 +<br>1 Bolzen M10 | min. von:<br>26,6; 21,6 / k <sub>mod</sub>                                      | 10,9                            | 10,4 | 16,6 | 8,2 | 10,9 / k <sub>mod</sub> 0,25 |  |

 $<sup>^{1)}</sup>$  Für den linken Winkel, muss resultierend aus dem Versatzmoment, eine zusätzliche Last  $F_1^*$  berücksichtigt werden.  $F_1^* = F_{4/5} \times e / b$  (siehe Zeichnung)

#### Ausnagelungsbilder zu Tabelle 5 und 6





#### Anwendungshinweis:

ABR100 Winkelverbinder sind für die Anwendung mit Brettsperrholz (CLT) zugelassen. Die statischen Werte und Nagelbilder können der ETA-06/0106 oder unserer CLT Broschüre entnommen werden.

# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

#### Winkelverbinder - ABR / ABRL / ACR



#### Charakteristische Werte der Tragfähigkeit

Tabelle 7

| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss zwei sich kreuzende Hölzer |                                 |                                       |      |      |                              |  |
|----------|-------------------|---------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------|------|------|------------------------------|--|
|          |                   |                                                                                                   | Teilausnagelung Vollausnagelung |                                       |      |      |                              |  |
|          |                   | $R_{1,k}$ $R_{2/3,k}$ $R_{4/5,k}$ $R_{1,k}$ $R_{1,k}$ $R_{2/3,k}$ $R_{4/5,k}$                     |                                 |                                       |      |      |                              |  |
| ABR105   | CNA4,0x40         | 5,9                                                                                               | 7,7                             | 8,9 / k <sub>mod</sub> <sup>0,5</sup> | 10,7 | 14,5 | 13,9 / k <sub>mod</sub> 0,3  |  |
| ADN 100  | CNA4,0x60         | 9,8                                                                                               | 11,6                            | 12,8 / k <sub>mod</sub> 0,3           | 17,8 | 20,2 | 16,4 / k <sub>mod</sub> 0,75 |  |
| ACR10520 | CNA4,0x60         | -                                                                                                 | _                               | _                                     | 17,9 | 20,3 | 16,6 / k <sub>mod</sub> 0,75 |  |

 $<sup>^{1)}</sup>$  b = 80 und e = 120

#### Charakteristische Werte der Tragfähigkeit

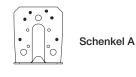
Tabelle 8

| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN] Anschluss Riegel an Stütze 1 Winkel unterhalb vom Riegel  R <sub>1,6</sub> R <sub>2,6</sub> |     |  |  |  |
|----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| ADDIOE   | CNA4,0x40         | 16                                                                                                                                         | 1,5 |  |  |  |
| ABR105   | CNA4,0x60         | 17                                                                                                                                         | 2,4 |  |  |  |

#### Ausnagelungsbilder zu Tabelle 7 und 8

# Voll

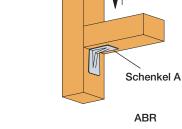
ABR105 / ACR10520




#### ABR105



Teil






Riegel



Schenkel B







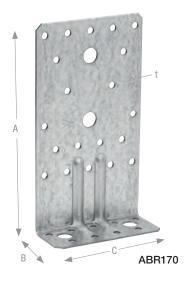
#### Zuhören, Beraten, Fachwissen vermitteln

Alle Mitarbeiter von Simpson Strong-Tie® machen es sich zur persönlichen Aufgabe Sie bestmöglich zu unterstützen. Sei es bei technischen Herausforderungen, bei der Planung Ihres Bauvorhabens oder bei der Auswahl der richtigen Produkte für Ihr Projekt.

Wir haben den Anspruch, technisch auf dem neusten Stand zu sein und Ihnen die bestmögliche Qualität zu gewährleisten damit Sie Ihr Ziel erreichen.

Wir sind für Sie da!

Tel: +49 (6032) 86 80 0 Email: info@strongtie.de


Unsere technische Hotline erreichen sie unter:

Tel.: +49 (6032) 86 80 122

Email: anwendungstechnik@strongtie.com

#### Winkelverbinder - ABR170 / ABR220





ABR170 und ABR220 Winkelverbinder mit Rippe sind für tragende Holzkonstruktionen geeignet, bei denen große Kräfte übertragen werden müssen. Durch die langen Schenkel und die besondere Anordnung der Löcher, sind die Winkel sehr gut für Stützenanschlüsse, Fassadenstiele und für den Anschluss von hohen Deckenbalken auf Holz- oder Betonauflagern geeignet.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Tabelle 1

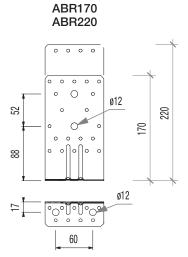
**Korrosionsschutz:** 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von ca. 20 µm

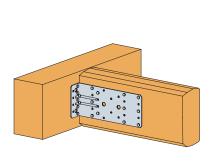
**Befestigung:** Der Anschluss am Holz erfolgt mit CNA4,0x\( Kammn\) Kammn\( Ageln \) oder CSA5,0x\( \) Schrauben. An Stahl oder Beton erfolgt die Befestigung mit 2 Bolzen M10



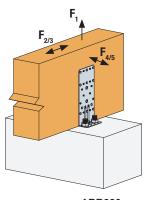




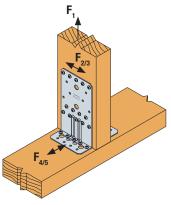

Produktabmessungen


| Art. Nr. | Abmessung [mm] |    |    |     | Anzahl Löcher Ø5 | [mm] in Schenkel |
|----------|----------------|----|----|-----|------------------|------------------|
|          | A              | В  | С  | t   | А                | В                |
| ABR170   | 170            | 40 | 95 | 2,0 | 20               | 9                |
| ABR220   | 220            | 40 | 95 | 2,0 | 24               | 9                |

#### Anwendungshinweis:


Im Sanierungsbereich lassen sich ABR170 und ABR220 sehr gut als Balkenschuhersatz verwenden.

Durch die häufig unterschiedlichen Breiten und Zwischenmaße bei alten Deckenbalken ist ein Anschluss mit Balkenschuhen nicht immer ohne weiteres möglich. Wie bei allen Queranschlüssen ist der Querzug zu beachten (siehe Hinweise in den Berechnungsvorraussetzungen).






ABR220 Nebenträger an Haupptträger



ABR220 Deckenbalken auf Beton



ABR170 Stütze auf Schwelle

#### Winkelverbinder - ABR170 / ABR220

### SIMPSON Strong-Tie

#### Charakteristische Werte der Tragfähigkeit

| Art. Nr.         | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN] 2 Winkel – Anschluss zwei sich kreuzende Hölzer; Stütze an Schwelle; Nebenträger an Hauptträger |      |                                       |
|------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------|
|                  | CNA4,0x40         | 7,4                                                                                                                                            | 16,4 | 9,6 / k <sub>mod</sub> <sup>0,2</sup> |
| ABR170<br>ABR220 | CNA4,0x50         | 10,0                                                                                                                                           | 19,8 | 9,6 / k <sub>mod</sub> 0,2            |
| ABILES           | CNA4,0x60         | 12,2                                                                                                                                           | 21,1 | 9,6 / k <sub>mod</sub> <sup>0,2</sup> |

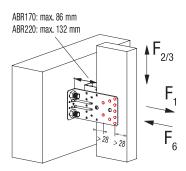
 $<sup>^{1)}</sup>$  b = 80 und e = 120

#### Tabelle 2

Tabelle 3

Tabelle 4

| bei R₁  | bei R <sub>2/3</sub> | bei R <sub>4/5</sub> |
|---------|----------------------|----------------------|
| • • • • | • • • •              | • • • •              |
| • • • • | · · · ·              | • • • •              |
| 0 0     | 0 0                  | • • • •              |
|         |                      |                      |
|         |                      |                      |


Ausnagelung







#### ABR170 / 220



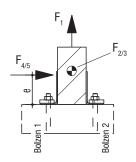
#### Charakteristische Werte der Tragfähigkeit

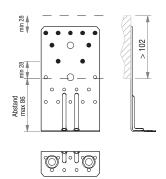
| Art. Nr. | Verbindungsmittel           | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss Balken an Beton;<br>Stütze an Beton, Nebenträger an Beton<br>Ausnagelung gemäß Nagelbilder |                                            |                                                                              |  |  |
|----------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------|--|--|
|          |                             | R <sub>1,k</sub>                                                                                                                                                  | R <sub>2,k</sub>                           | R <sub>4/5,k</sub> 1)                                                        |  |  |
| ABR170   | CNA4,0x50 +<br>2 Bolzen M10 | min. von:<br>39,8; 25,2 / k <sub>mod</sub>                                                                                                                        | min. von:<br>23,8; 24,6 / k <sub>mod</sub> | min. von:                                                                    |  |  |
| ABR220   | CNA4,0x60 +<br>2 Bolzen M10 | 25,2 / K <sub>mod</sub>                                                                                                                                           | min. von:<br>25,4; 24,6 / k <sub>mod</sub> | $-9,15 + \frac{80}{e \times k_{mod}}; \frac{6,3 \times b}{e \times k_{mod}}$ |  |  |

 $<sup>^{19}</sup>$  Die Kraft muss mindestens im Abstand e = 50 mm angreifen. Für die Lastrichtung  $F_{4/5}$  ist zusätzlich zu prüfen  $R_{4/5,d} \le R_{1,d} \times b$  /(2xe)

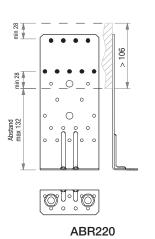
#### Charakteristische Werte der Tragfähigkeit

| Charakterist | ische | vverte | aer | rragianigkeit |
|--------------|-------|--------|-----|---------------|
|              |       |        |     |               |


| Art. Nr. | Verbindungsmittel           | Charakteristische Werte der Tragfähigkeit [kN]<br>1 Winkel – Anschluss Fassadenstiel an Beton <sup>1)</sup><br>Ausnagelung gemäß Nagelbilder |                    |                                            |  |
|----------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------|--|
|          |                             | $R_{i,k}$                                                                                                                                    | R <sub>2/3,k</sub> | $R_{6,k}$                                  |  |
| ABR170   | CNA4,0x40 +<br>2 Bolzen M10 | min. von:<br>11,8; 12,1 / k <sub>mod</sub>                                                                                                   | 3,8                | min. von:<br>16,5; 11,1 / k <sub>mod</sub> |  |
| ABR220   | CNA4,0x40 +<br>2 Bolzen M10 | min. von:<br>15,9; 12,1 / k <sub>mod</sub>                                                                                                   | 2,9                | min. von:<br>16,5; 9,0 / k <sub>mod</sub>  |  |


Die angegebenen Werte gelten für einen Winkel je Anschluss. Es wird jedoch vorausgesetzt, dass ein Verdrehen der Stiele durch eine wechselseitige Anordung weiterer Winkel auf der gegenüberliegenden Seite verhindert wird.

#### Bolzenfaktoren


Tabelle 5

| Lastrichtung                            | Faktoren zur Bolzenberechnung bei<br>2 ABR170 / ABR220 |                  |  |  |
|-----------------------------------------|--------------------------------------------------------|------------------|--|--|
|                                         | R <sub>1,k</sub>                                       | R <sub>6,k</sub> |  |  |
| F <sub>1</sub> bei Bolzenpaar 1 und 2   | 0,5                                                    | 0,0              |  |  |
| F <sub>2/3</sub> bei Bolzenpaar 1 und 2 | 0,0                                                    | 0,5              |  |  |
| F <sub>4/5</sub> bei Bolzenpaar 1       | e/b                                                    | 0,0              |  |  |
| F <sub>4/5</sub> bei Bolzenpaar 2       | 0,0                                                    | 1,0              |  |  |






ABR170



#### Winkelverbinder - E20/3 / E9/2,5



**Z275** 20 µm



E Winkelverbinder sind für Anschlüsse geeignet, bei denen große Kräfte übertragen werden müssen. Dabei können die Auflager aus Holz oder Beton beschaffen sein.

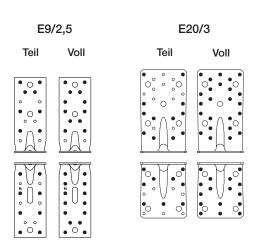
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

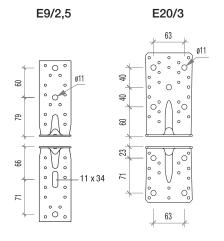
Tabelle 1

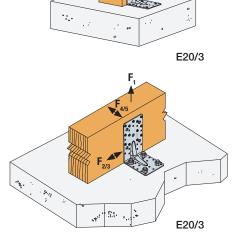
Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Der Anschluss erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. An Stahl oder Beton erfolgt die Befestigung mit Bolzen M10.




#### Produktabmessungen


| Art. Nr. |     | Abmessı | ung [mm] | Anzahl Löcher Ø5 | [mm] in Schenkel |    |  |  |  |
|----------|-----|---------|----------|------------------|------------------|----|--|--|--|
|          | A   | В       | С        | t                | А                | В  |  |  |  |
| E9/2,5   | 154 | 153     | 65       | 2,5              | 14               | 14 |  |  |  |
| E20/3    | 170 | 113     | 95       | 3,0              | 24               | 16 |  |  |  |


#### Charakteristische Werte der Tranfähinkeit

| Char | Charakteristische Werte der Tragfähigkeit Tabelle 2 |                   |                                                                                                                                                                                |                    |                                        |                    |  |  |  |  |
|------|-----------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------|--------------------|--|--|--|--|
| А    | rt. Nr.                                             | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN] 2 Winkel – Anschluss zwei sich kreuzende Hölzer; Stütze an Schwelle; Nebenträger an Hauptträger Teilausnagelung Vollausnagelung |                    |                                        |                    |  |  |  |  |
|      |                                                     |                   | Teilausn                                                                                                                                                                       | agelung            | Vollausn                               | agelung            |  |  |  |  |
|      |                                                     |                   | $R_{_{1,k}}$                                                                                                                                                                   | R <sub>2/3,k</sub> | $\mathbf{R}_{\scriptscriptstyle{1,k}}$ | R <sub>2/3,k</sub> |  |  |  |  |
| [    | E9/2,5                                              | CNA4,0x50         | 3,4 / k <sub>mod</sub> -0,2                                                                                                                                                    | 8,9                | 8,5 / k <sub>mod</sub> -0,1            | 13,0               |  |  |  |  |
|      | E20/3                                               | CNA4,0x50         | 8,8                                                                                                                                                                            | 20,2               | 11,7                                   | 26,5               |  |  |  |  |

#### Ausnagelungsbilder zu Tabelle 2







#### Winkelverbinder – E20/3 / E9/2,5



#### Charakteristische Werte der Tragfähigkeit

| Art. Nr. | Verbindungsmittel           | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss an Beton |                                        |           |                    |              |                    |
|----------|-----------------------------|---------------------------------------------------------------------------------|----------------------------------------|-----------|--------------------|--------------|--------------------|
|          |                             | Balken                                                                          |                                        |           | Stütze             |              |                    |
|          |                             | Vollausr                                                                        | Vollausnagelung Ausnagelung wie Stütze |           |                    |              |                    |
|          |                             | $R_{1,k}$                                                                       | R <sub>2/3,k</sub>                     | $R_{1,k}$ | R <sub>2/3,k</sub> | $R_{_{1,k}}$ | R <sub>2/3,k</sub> |
| E20/3    | CNA4,0x50 +<br>4 Bolzen Ø10 | 71                                                                              | 44,7                                   | 40        | 29,1               | 40           | 29,1               |

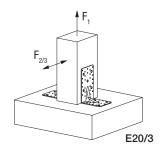
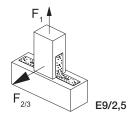
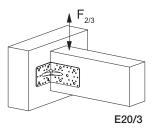




Tabelle 3

Tabelle 4


#### Charakteristische Werte der Tragfähigkeit

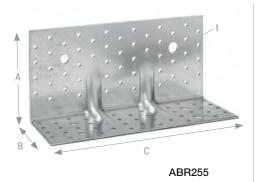
Charakteristische Werte der Tragfähigkeit [kN] 2 Winkel – Anschluss Stütze auf Schwelle Art. Nr. Verbindungsmittel  $R_{2/3,k}$ E9/2,5 CNA4,0x50 5,1 8,6 E20/3 CNA4,0x50 8,8 15,8



#### Charakteristische Werte der Tragfähigkeit

Tabelle 5 Charakteristische Werte der Tragfähigkeit [kN] 2 Winkel – Anschluss Nebenträger an Hauptträger Verbindungsmittel Art. Nr. E9/2,5 CNA4,0x50 13,0 E20/3 CNA4,0x50 19,3




#### Ausnagelungsbilder zu den Tabellen 3, 4 und 5

| E20          | /3           | E9/2,5    | E20/3       | E9/2,5      | E20/3          |
|--------------|--------------|-----------|-------------|-------------|----------------|
| Balken/Beton | Stütze/Beton | Stütze au | ıf Schwelle | Nebenträger | an Hauptträger |
|              |              |           |             |             |                |
|              |              |           |             |             |                |

Winkelverbinder

#### Winkelverbinder – ABR255

#### **SIMPSON** Strong-Tie



ABR255 Winkelverbinder eignen sich gut zur Aufnahme von hohen abhebenden und horizontalen Kräften, besonders für Brettsperrholz. Angepasste Ausnagelungsvarianten lassen verschiedene Anschlussmöglichkeiten an Brettsperrholz zu.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

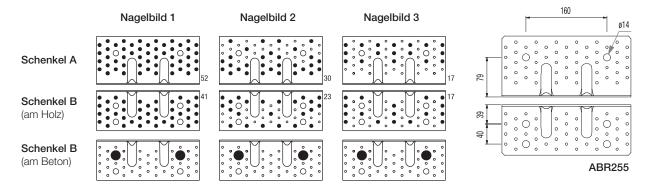
 $\textbf{Korrosionsschutz:}\ 275\ g/m^2\ beidseitig- entsprechend\ einer\ Zinkschichtdicke\ von$ 

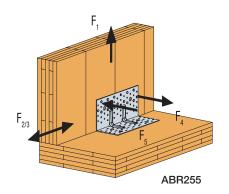
Befestigung: Der Anschluss erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. An Stahl oder Beton erfolgt die Befestigung mit Bolzen M12.

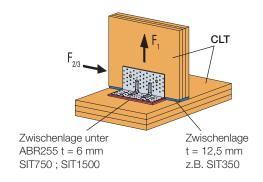










#### Produktabmessungen


Tabelle 1

| Art. Nr. | Abmessung [mm] |     |     |     | Anzahl Löcher Ø5 | [mm] in Schenkel |
|----------|----------------|-----|-----|-----|------------------|------------------|
|          | A              | В   | С   | t   | Α                | В                |
| ABR255   | 120            | 100 | 255 | 3,0 | 52               | 41               |

#### Ausnagelungsbilder ABR255







Für Ausführungen mit Zwischenlagen siehe auch ETA-06/0106, Nagelbild 4.



#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr. | Nagelbild |            | ngsmittel<br>gelung | Charakteristische Werte der Tragfähigkeit [kN] 1 Winkel je Anschluss <sup>1)</sup> |                                            |                                                            |                                                                                |  |  |
|----------|-----------|------------|---------------------|------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
|          |           | Schenkel A | Schenkel B          | R <sub>1,k</sub>                                                                   | R <sub>2/3,k</sub>                         | R <sub>4,k</sub>                                           | $R_{5,k}$                                                                      |  |  |
|          |           | CNA4,0x40  | CNA4,0x40           | min. von:<br>16,0 / k <sub>mod</sub> <sup>0,4</sup> ; 23,6 / k <sub>mod</sub>      | 37,0                                       | 14,9                                                       | min. von:<br>15,7 / k <sub>mod</sub> <sup>0,4</sup> ; 13,4 / k <sub>mod</sub>  |  |  |
|          |           | CNA4,0x60  | CNA4,0x60           | min. von:<br>22,5 / k <sub>mod</sub> <sup>0,4</sup> ; 23,6 / k <sub>mod</sub>      | 50,5                                       | 21,1                                                       | 13,4 / k <sub>mod</sub>                                                        |  |  |
|          | 1         | CSA5,0x50  | CSA5,0x50           | 23,6 / k <sub>mod</sub>                                                            | 58,6                                       | min. von:<br>29,4 / k <sub>mod</sub> <sup>0,5</sup> ; 36,4 | 13,4 / k <sub>mod</sub>                                                        |  |  |
|          |           | CNA4,0x50  | 2 Bolzen M12        | 22,0 / k <sub>mod</sub>                                                            | min. von:<br>45,3; 42,9 / k <sub>mod</sub> | 18,3 / k <sub>mod</sub> 0,7                                | min. von:<br>23,5 / k <sub>mod</sub> <sup>0,25</sup> ; 17,7 / k <sub>mod</sub> |  |  |
|          |           | CSA5,0x50  | 2 Bolzen M12        | 22,0 / k <sub>mod</sub>                                                            | min. von:<br>54,4; 42,9 / k <sub>mod</sub> | 18,3/ k <sub>mod</sub> 0,7                                 | 17,7 / k <sub>mod</sub>                                                        |  |  |
|          |           | CNA4,0x40  | CNA4,0x40           | min. von:<br>13,7/ k <sub>mod</sub> 0,4; 23,6 / k <sub>mod</sub>                   | 30,5                                       | 13,8                                                       | min. von:<br>13,6; 13,9 / k <sub>mod</sub>                                     |  |  |
|          |           | CNA4,0x60  | CNA4,0x60           | min. von:<br>19,5 / k <sub>mod</sub> <sup>0,4</sup> ; 23,6 / k <sub>mod</sub>      | 42,1                                       | 19,5                                                       | min. von:<br>22,0; 13,9 / k <sub>mod</sub>                                     |  |  |
| ABR255   | 2         | CSA5,0x50  | CSA5,0x50           | 23,6 / k <sub>mod</sub>                                                            | 48,1                                       | min. von:<br>29,4 / k <sub>mod</sub> <sup>0,5</sup> ; 32,4 | 13,9 / k <sub>mod</sub>                                                        |  |  |
|          |           | CNA4,0x50  | 2 Bolzen M12        | min. von:<br>24,8; 22,0 / k <sub>mod</sub>                                         | min. von:<br>29,3; 42,9 / k <sub>mod</sub> | 18,3 / k <sub>mod</sub> <sup>0,7</sup>                     | min. von:<br>19,9 / k <sub>mod</sub> <sup>0,4</sup> ; 17,7 / k <sub>mod</sub>  |  |  |
|          |           | CSA5,0x50  | 2 Bolzen M12        | 22,0 / k <sub>mod</sub>                                                            | min. von:<br>34,7; 42,9 / k <sub>mod</sub> | 18,3 / k <sub>mod</sub> 0,7                                | 17,7 / k <sub>mod</sub>                                                        |  |  |
|          |           | CNA4,0x40  | CNA4,0x40           | min. von:<br>11,2 / k <sub>mod</sub> <sup>0,4</sup> ; 26,2 / k <sub>mod</sub>      | 17,0                                       | 9,5                                                        | min. von:<br>4,7; 11,2 / k <sub>mod</sub>                                      |  |  |
|          |           | CNA4,0x60  | CNA4,0x60           | min. von:<br>15,0 / k <sub>mod</sub> <sup>0,4</sup> ; 26,2 / k <sub>mod</sub>      | 22,9                                       | 13,6                                                       | min. von:<br>5,7; 11,2 / k <sub>mod</sub>                                      |  |  |
|          | 3         | CSA5,0x50  | CSA5,0x50           | min. von:<br>27,2 / k <sub>mod</sub> <sup>0,4</sup> ; 26,2 / k <sub>mod</sub>      | 26,1                                       | 23,4                                                       | min. von:<br>6,9; 11,2 / k <sub>mod</sub>                                      |  |  |
|          |           | CNA4,0x50  | 2 Bolzen M12        | <u>min. von:</u><br>23,1; 22,0 / k <sub>mod</sub>                                  | min. von:<br>17,3; 42,9 / k <sub>mod</sub> | 18,3 / k <sub>mod</sub> 0,7                                | 6,5 / k <sub>mod</sub> <sup>0,6</sup>                                          |  |  |
|          |           | CSA5,0x50  | 2 Bolzen M12        | min. von:<br>38,7; 22,0 / k <sub>mod</sub>                                         | min. von:<br>19,6; 42,9 / k <sub>mod</sub> | 18,3 / k <sub>mod</sub> 0,7                                | 9,2 / k <sub>mod</sub> 0,5                                                     |  |  |

<sup>&</sup>lt;sup>1)</sup> Die anzuschließenden Bauteile müssen in den entsprechenden Lastrichtungen gegen Verdrehen gesichert sein.
Bei Verwendung von 2 Winkeln darf für die Lastrichtung F<sub>1</sub> und F<sub>2/3</sub> mit den doppelten Tabellenwerten gerechnet werden.

#### Bolzenfaktoren für Bolzengruppe

Tabelle 3

|                  | R <sub>1,k</sub> | R <sub>2/3,k</sub> | R <sub>4,k</sub> | R <sub>5,k</sub>                      |
|------------------|------------------|--------------------|------------------|---------------------------------------|
| k <sub>lat</sub> | _                | 1                  | 1                | 1                                     |
| k <sub>ax</sub>  | 1,1              | _                  | 0,4              | 1,1 <sup>1)</sup> ; 2,0 <sup>2)</sup> |

<sup>1)</sup> bei Nagelbild 1 und 2

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Weitere Informationen zur Bolzenberechnung sind am Anfang dieses Kapitels zu finden.

<sup>2)</sup> bei Nagelbild 3

#### Winkelverbinder - ABR255SO





ABR255SO Winkelverbinder wurden zur Aufnahme von hohen Zug- und Schubkräften konzipiert, mit der Möglichkeit Schwellen und kleinere Aufkantungen bis 100 mm Höhe überbrücken zu können. Die verschiedenen Nagelbilder erlauben viele Anschlussmöglichkeiten an Vollholz und an Brettsperrholz.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von

Befestigung: Der Anschluss erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. An Stahl oder Beton erfolgt die Befestigung mit Bolzen M12.







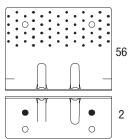
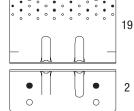

Produktabmessungen

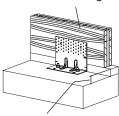
Tabelle 1

| Art. Nr. |     | Abmessung [mm] |     |     | Anzahl Löcher Ø5 [mm] in Schenkel |   |  |
|----------|-----|----------------|-----|-----|-----------------------------------|---|--|
|          | A   | В              | С   | t   | Α                                 | В |  |
| ABR255S0 | 200 | 100            | 255 | 3,0 | 56                                | _ |  |


#### Ausnagelungsbilder ABR255SO

#### Nagelbild 1




Holz an Beton Zwischenlagen: bis 80 mm

### Nagelbild 2



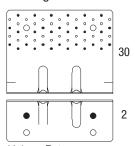
Holz an Beton Zwischenlagen: bis 100 mm

#### Faserrichtung



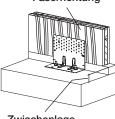
Zwischenlage

160 ø14 28 0 0 0 0

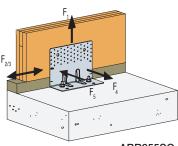

ABR255SO

#### Nagelbild 3




Holz an Beton Zwischenlagen: bei CLT bis 88 mm bei Holzstützen bis 68 mm

#### Nagelbild 4




Holz an Beton Zwischenlagen: bei CLT bis 72 mm bei Holzstützen bis 52 mm

#### Faserrichtung



Zwischenlage



ABR255SO

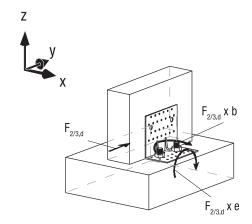
#### Winkelverbinder - ABR255SO

#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

**SIMPSON** 

Strong-Tie


| Art. Nr. | Nagelbild |            | ngsmittel<br>gelung |                                            | Ch                               |                                        | Werte der Tragt<br>kel je Anschluss     |                          | [kN]                      |                         |                          |                           |
|----------|-----------|------------|---------------------|--------------------------------------------|----------------------------------|----------------------------------------|-----------------------------------------|--------------------------|---------------------------|-------------------------|--------------------------|---------------------------|
|          |           |            |                     |                                            |                                  | Versatzmaß Bolzenfaktor R <sub>4</sub> |                                         | ļ.                       | Bolzer                    | nfaktor F               | R <sub>5</sub>           |                           |
|          |           | Schenkel A | Schenkel B          | R <sub>1,k</sub>                           | R <sub>2/3,k</sub> <sup>2)</sup> | e [mm]                                 | R <sub>4,k</sub>                        | <b>k</b> <sub>ax,b</sub> | <b>k</b> <sub>lat.b</sub> | R <sub>5,k</sub>        | <b>k</b> <sub>ax,b</sub> | <b>k</b> <sub>lat.b</sub> |
|          |           | CNA4,0x40  |                     | 22,9 / k <sub>mod</sub>                    | 32,5                             | 81,4                                   |                                         |                          |                           |                         |                          |                           |
|          | 1         | CNA4,0x50  | 2 Bolzen<br>M12     | 22,9 / k <sub>mod</sub>                    | 38,6                             | 61,4                                   | 18,2 / k <sub>mod</sub> 0,66            | 0,4                      | 1                         | 5,05 / k <sub>mod</sub> | 3,5                      | 1                         |
|          |           | CSA5,0x50  |                     | 22,9 / k <sub>mod</sub>                    | 48,2                             | 35,3                                   |                                         |                          |                           |                         |                          |                           |
|          |           | CNA4,0x40  |                     | min. von:<br>27,5; 22,9 / k <sub>mod</sub> | 15,7                             | 146,2                                  | 18,2 / k <sub>mod</sub> 0,66            | 0,4                      |                           | 5,05 / k <sub>mod</sub> | 3,7                      | 1                         |
|          | 2         | CNA4,0x50  | 2 Bolzen<br>M12     | min. von:<br>34,7; 22,9 / k <sub>mod</sub> | 20,7                             | 145,5                                  |                                         |                          | 1                         |                         |                          |                           |
| ADDOEECO | ADDOLLO   | CSA5,0x50  |                     | 22,9 / k <sub>mod</sub>                    | 28,8                             | 96,6                                   |                                         |                          |                           |                         |                          |                           |
| ABR255S0 |           | CNA4,0x40  |                     | 22,9 / k <sub>mod</sub>                    | 16,8                             | 155,5                                  | 18,2 / k <sub>mod</sub> <sup>0,66</sup> |                          |                           | 5,05 / k <sub>mod</sub> | 4,0                      |                           |
|          | 3         | CNA4,0x50  | 2 Bolzen<br>M12     | 22,9 / k <sub>mod</sub>                    | 21,7                             | 137,6                                  |                                         | 0,4                      | 1                         |                         |                          | 1                         |
|          |           | CSA5,0x50  |                     | 22,9 / k <sub>mod</sub>                    | 31,0                             | 87,2                                   |                                         |                          |                           |                         |                          |                           |
|          |           | CNA4,0x40  |                     | 22,9 / k <sub>mod</sub>                    | 21,3                             | 140,3                                  | 18,2 / k <sub>mod</sub> 0,66            | 0,4                      | 1                         | 5,05 / k <sub>mod</sub> |                          | 1                         |
|          | 4         | CNA4,0x50  | 2 Bolzen<br>M12     | 22,9 / k <sub>mod</sub>                    | 26,1                             | 109,9                                  |                                         |                          |                           |                         | 3,4                      |                           |
|          |           | CSA5,0x50  |                     | 22,9 / k <sub>mod</sub>                    | 35,3                             | 71,6                                   |                                         |                          |                           |                         |                          |                           |

 $<sup>^{1)}</sup>$  Die anzuschließenden Bauteile müssen gegen Verdrehen gesichert sein.  $^{2)}$  Für  $\rm R_{2/3}$ : Versatzmaß b = 28 mm

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Die Ankerbolzen müssen separat nachgewiesen werden mit:

$$\begin{split} F_{1,bolt,d} &= R_{1,d} \times 1,1 \\ V_{y,d} &= F_{2/3,d} \\ M_{x,d} &= F_{2/3,d} \times e \\ M_{y,d} &= F_{2/3,d} \times b, \, mit \, b = 28 \, mm \end{split}$$



#### **SIMPSON** Strong-Tie

#### Winkelverbinder - AB255HD



AB255HD Winkelverbinder von Simpson Strong-Tie® verbinden Hölzer und Brettsperrholzelemente optimal miteinander. Insbesondere sehr hohe Zuglasten, sowie hohe Horizontallasten, z.B. in mehrgeschossige Holzbauten können sicher verankert werden. Die Vollgewindeschrauben, z.B. ESCRFTC8,0x200, werden direkt vor der schrägen Biegekante des Winkelverbinders eingebracht, dabei liegen die Schraubenköpfe plan auf. Die Schrauben nehmen Lasten genau dort auf, wo sie entstehen und entfalten so ihre volle Tragfähigkeit.

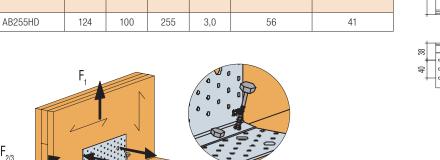
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Tabelle 1

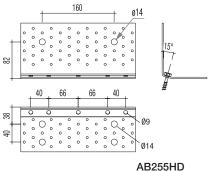
Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von ca. 20 µm.

**Befestigung:** Der Anschluss erfolgt mit CNA4,0x $\ell$  Kammnägeln oder CSA5,0x $\ell$ Schrauben. An Stahl oder Beton erfolgt die konstruktive Befestigung mit Bolzen



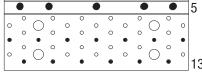




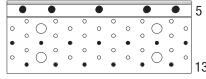



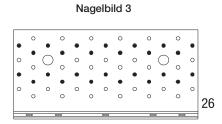

#### Produktabmessungen

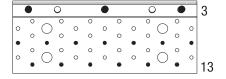
| Art. Nr. | Abmessung [mm] |     |     |     | Anzahl Löcher Ø5 | [mm] in Schenkel |
|----------|----------------|-----|-----|-----|------------------|------------------|
|          | A              | В   | С   | t   | А                | В                |
| AB255HD  | 124            | 100 | 255 | 3,0 | 56               | 41               |




AB255HD





#### Ausnagelungsbilder AB255HD Balken an Balken, bzw. CLT an CLT


## Nagelbild 1 26











#### Winkelverbinder – AB255HD

#### SIMPSON Strong-Tie

#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr. | Nagelbild | Verbindungsmittel |                              | Charakteristische Werte der Tragfähigkeit [kN]<br>1 Winkel je Anschluss <sup>1)</sup> |                    |                                                      |                                            |  |  |
|----------|-----------|-------------------|------------------------------|---------------------------------------------------------------------------------------|--------------------|------------------------------------------------------|--------------------------------------------|--|--|
|          |           | Schenkel A        | Schenkel B                   | $R_{i,k}$                                                                             | R <sub>2/3,k</sub> | R <sub>4,k</sub>                                     | $R_{5,k}$                                  |  |  |
|          |           | CNA4,0x40         | 5 VGS 8,0x200<br>+ CNA4,0x40 | min. von:<br>47,0; 56,0 / k <sub>mod</sub>                                            | 35,0               |                                                      | min. von:<br>6,6; 9,25 / k <sub>mod</sub>  |  |  |
|          | 1         | CNA4,0x60         | 5 VGS 8,0x200<br>+ CNA4,0x60 | min. von:<br>61,4; 56,0 / k <sub>mod</sub>                                            | 45,7               | min. von:<br>13,9 / k <sub>mod</sub> <sup>0,76</sup> | min. von:<br>10,9; 9,25 / k <sub>mod</sub> |  |  |
|          |           | CSA5,0x50         | 5 VGS 8,0x200<br>+ CSA5,0x50 | min. von:<br>63,9; 56,0 / k <sub>mod</sub>                                            | 46,0               |                                                      | 9,25 / k <sub>mod</sub>                    |  |  |
|          |           | CNA4,0x40         | 5 VGS 8,0x200<br>+ CNA4,0x40 | min. von:<br>54,3; 56,0 / k <sub>mod</sub>                                            | 37,7               | min. von:<br>13,9 / k <sub>mod</sub> <sup>0,76</sup> | min. von:<br>10,2; 9,25 / k <sub>mod</sub> |  |  |
| AB255HD  | 2         | CNA4,0x60         | 5 VGS 8,0x200<br>+ CNA4,0x60 | min. von:<br>70,9; 56,0 / k <sub>mod</sub>                                            | 49,7               |                                                      | min. von:<br>16,8; 9,25 / k <sub>mod</sub> |  |  |
|          |           | CSA5,0x50         | 5 VGS 8,0x200<br>+ CSA5,0x50 | <u>min. von:</u><br>72,4; 56,0 / k <sub>mod</sub>                                     | 53,5               |                                                      | 9,25 / k <sub>mod</sub>                    |  |  |
|          |           | CNA4,0x40         | 3 VGS 8,0x200<br>+ CNA4,0x40 |                                                                                       | 28,3               |                                                      | min. von:<br>6,5; 9,25 / k <sub>mod</sub>  |  |  |
|          | 3         | CNA4,0x60         | 3 VGS 8,0x200<br>+ CNA4,0x60 | min. von:<br>46,9; 56,0 / k <sub>mod</sub>                                            | 32,4               | min. von:<br>13,9 / k <sub>mod</sub> 0,76            | min. von:<br>10,8; 9,25 / k <sub>mod</sub> |  |  |
|          |           | CSA5,0x50         | 3 VGS 8,0x200<br>+ CSA5,0x50 |                                                                                       | 43,4               |                                                      | 9,25 / k <sub>mod</sub>                    |  |  |

<sup>&</sup>lt;sup>1)</sup> Die anzuschließenden Bauteile müssen gegen Verdrehen gesichert sein.
<sup>2)</sup> VGS = Vollgewindeschrauben ESCRFTC8,0x200 oder vergleichbar.

#### Beispiel:

CLT-Wandtafel d = 100 an CLT-Bodenplatte d = 100,

(CLT-Aufbau ist 5-lagig 20/20/20/20; Faserverlauf der Decklage: senkrecht)

Gewählter Verbinder: 1 Stück AB255HD,

mit ESCRFTC8,0x200 und CNA4,0x60 Kammnägel  $\Rightarrow$  3 Brettlagen werden von den Nägeln erfasst.

Nagelbild 1: erf.  $a_{3,t} = 40 \text{ mm} < \text{vorh. } a_{3,t} = 52 \text{ mm}$ 

**Belastung:**  $F_{1,d} = 30.2 \text{ kN}$ ;  $F_{2/3,d} = 7.9 \text{ kN}$ ;  $F_{4,d} = 2.1 \text{ kN}$  (Bauteil ist gegen Verdrehen gesichert); NKL.2; KLED: kurz  $\Rightarrow$   $k_{mod} = 0.9$ 

Werte aus der Tabelle

 ${\rm R_{1,d}} = 61,4 \ x \ 0,9 \ / \ 1,3 = 42,5 \ kN \ oder \ {\rm R_{1,d}} = (56,0 \ / \ 0,9) \ x \ 0,9 \ / \ 1,3 = 43,1 \ kN \\ \Rightarrow nicht \ maßgebend$  $R_{2/3,d} = 45.7 \times 0.9 / 1.3 = 31.6 \text{ kN}$ 

 $R_{4d} = (13.9 / 0.9^{0.76}) \times 0.9 / 1.3 = 10.4 \text{ kN}$ 

Nachweis: 
$$\sqrt{\left|\frac{30,2}{42,5} + \frac{2,1}{10,4}\right|^2 + \left(\frac{7,9}{31,6}\right)^2} = 0,95 < 1,0$$

Treten ausschließlich Zuglasten [F,] auf, können die CNA Kammnägel oder CSA Verbinderschrauben im Schenkel B entfallen.

#### Winkelverbinder – AB255SSH





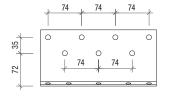
AB255SSH Winkelverbinder von Simpson Strong-Tie® sind für Anschlüsse von Holz an Holz ausgelegt und verbinden Hölzer sowie Brettsperrholzelemente optimal miteinander. Das Besondere an diesem Verbinder ist die Möglichkeit der Montage mit SSH-Verbinderschrauben mit Sechskantkopf als Teil- oder Vollverschraubung, die eine hohe Tragfähigkeit und eine sehr schnelle Montage gewährleisten. In das kurz vor der Biegekante angewinkelte Bodenblech werden SSH-Schrauben schräg eingedreht. Damit wird sichergestellt, dass die Lasten direkt dort aufgenommen werden, wo sie entstehen. Der AB255SSH darf in alle Richtungen belastet werden.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346. Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von ca. 20 µm.

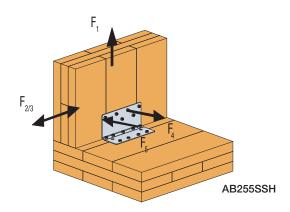
Befestigung: Der Anschluss erfolgt mit SSH-Verbinderschrauben. An Stahl oder Beton erfolgt eine konstruktive Befestigung mit Bolzen M12.

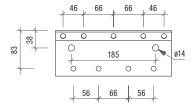
Tabelle 1







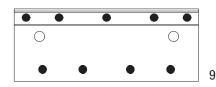


ETA-06/0106 DoP-e06/0106


#### Produktabmessungen

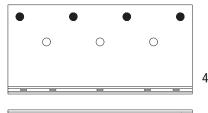
Art. Nr. Abmessung [mm] Anzahl Löcher Ø11 [mm] in Schenkel В С В Α Α 7 9 AB255SSH 123 100 255 3,0











#### Schraubbilder AB255SSH Balken an Balken, bzw. CLT an CLT

7

Schraubbild 1



#### Schraubbild 2





# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

#### Winkelverbinder – AB255SSH



Schrägstehende Schrauben in der Nähe der Biegelinie werden in einem Winkel von 15° zur Vertikalen gesetzt. Es müssen Schrauben mit Sechskantkopf verwendet werden.

#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr.  | Schraub-<br>bild | Verbindungsmittel        |                          | Charakteristische Werte der Tragfähigkeit [kN] 1 Winkel je Anschluss 1) |                    |                                                            |                                        |  |  |
|-----------|------------------|--------------------------|--------------------------|-------------------------------------------------------------------------|--------------------|------------------------------------------------------------|----------------------------------------|--|--|
|           |                  | Schenkel A <sup>2)</sup> | Schenkel B <sup>2)</sup> | R <sub>1,k</sub>                                                        | R <sub>2/3,k</sub> | R <sub>4,k</sub>                                           | R <sub>5,k</sub>                       |  |  |
|           |                  | SSH10x50                 | SSH10x50                 | 19,3 × k <sub>mod</sub> <sup>0,12</sup>                                 | 24,7               |                                                            | 5,0 / k <sub>mod</sub> <sup>0,24</sup> |  |  |
|           | 1                | SSH10x100                | SSH10x100                | 26,4 × k <sub>mod</sub> 0,09                                            | 35,0               | - 13,9 / k <sub>mod</sub> 0,76                             | $5,2$ / $k_{mod}^{0,24}$               |  |  |
|           | 1                | SSH10x120                | SSH10x120                | 42,6                                                                    | 42,6               | 13,97 K <sub>mod</sub>                                     | 5,3 / k <sub>mod</sub> 0,24            |  |  |
| AB255SSH  |                  | SSH10x160                | SSH10x160                | 56,2                                                                    | 48,5               |                                                            | 5,3 / k <sub>mod</sub> 0,24            |  |  |
| ADZUUSSII |                  | SSH10x50                 | SSH10x50                 | $10.9 \times k_{mod}^{0.2}$                                             | 15,4               | min. von:<br>13,9; 13,9 / k <sub>mod</sub> <sup>0,76</sup> | 2,0 / k <sub>mod</sub> <sup>0,8</sup>  |  |  |
|           | 2                | SSH10x100                | SSH10x100                | 15,4 × k <sub>mod</sub> 0,15                                            | 21,8               | min. von:<br>14,6; 13,9 / k <sub>mod</sub> <sup>0,76</sup> |                                        |  |  |
|           | 2                | SSH10x120                | SSH10x120                | $25.6 \times k_{mod}^{0.1}$                                             | 26,5               | min. von:<br>18,8; 13,9 / k <sub>mod</sub> 0,76            | 2,1 / k <sub>mod</sub> <sup>0,8</sup>  |  |  |
|           |                  | SSH10x160                | SSH10x160                | $34,2 \times k_{mod}^{0,07}$                                            | 30,1               | 13,9 / k <sub>mod</sub> 0,76                               |                                        |  |  |

<sup>1)</sup> Die anzuschließenden Bauteile müssen gegen Verdrehen gesichert sein.

Bei Verwendung von 2 Winkelverbindern darf mit den doppelten Werten gerechnet werden.

#### Beispiel:

CLT-Wandtafel d = 140 mm an CLT-Bodenplatte d = 140 mm,

(CLT-Aufbau ist 5-lagig 40/20/20/20/40; Faserverlauf der Decklage: senkrecht)

Gewählter Verbinder: 1 Stück AB255SSH,

mit SSH10x100 vollverschraubt (Schraubbild 1)

**Belastung:**  $F_{1,d} = 11,3 \text{ kN}$ ;  $F_{2/3,d} = 7,6 \text{ kN}$ ;  $F_{4,d} = 2,8 \text{ kN}$  (das Bauteil ist gegen Verdrehen gesichert);

NKL.1; KLED:  $k_{mod} = 0.9$ 

Werte aus der Tabelle

$$R_{1,d} = (26.4 \times 0.9^{0.09}) \times 0.9 / 1.3 = 18.1 \text{ kN}$$

$$R_{2/3,d} = 35,0 \times 0,9 / 1,3 = 24,2 \text{ kN}$$

$$R_{4d} = (13.9 / 0.9^{0.76}) \times 0.9 / 1.3 = 10.4 \text{ kN}$$

Nachweis: 
$$\sqrt{\frac{11,3}{18,1} + \frac{2,8}{10,4}}$$

$$\sqrt{\left|\frac{11,3}{18,1} + \frac{2,8}{10,4}\right|^2 + \left|\frac{7,6}{24,2}\right|^2} = 0,95 < 1,0$$

<sup>&</sup>lt;sup>2)</sup> SSH = Verbinderschrauben mit Sechskantkopf

Winkelverbinder

#### Winkelverbinder - ACW155



**Z275** 

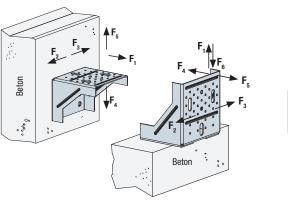


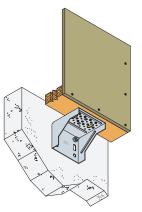
ACW155 Konsolwinkel sind leistungsstarke Verbinder aus 2,5 mm dickem Blech mit Flächenverstärkung. Sie werden überall dort eingesetzt, wo Schwelloder Randhölzer vorwiegend an Beton oder Stahl angehängt, abgehängt oder aufgelagert werden müssen. ACW155 Konsolwinkel sind ebenso dazu geeignet, Vorhangfassaden an Betondecken zu befestigen.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

**Korrosionsschutz:**  $275 \text{ g/m}^2$  beidseitig – entsprechend einer Zinkschichtdicke von ca.  $20 \mu m$ .

Befestigung: Die Befestigung erfolgt mit CNA4,0xℓ Kammnägeln oder CSA5,0xℓ Schrauben. Zur Befestigung auf Beton werden zwei M12 Ankerbolzen verwendet.



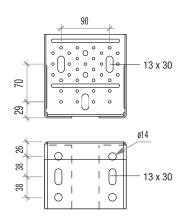

 Art. Nr.
 Abmessung [mm]
 Anzahl Löcher Ø5 [mm] in Schenkel

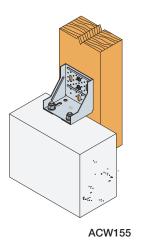
 A
 B
 C
 t
 A
 B

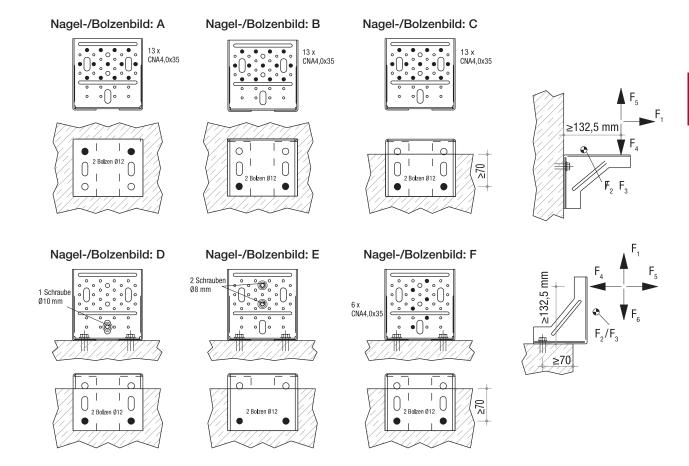
 ACW155
 154
 123
 150
 2,5
 33






ACW155


Tabelle 2


#### Charakteristische Werte der Tragfähigkeit

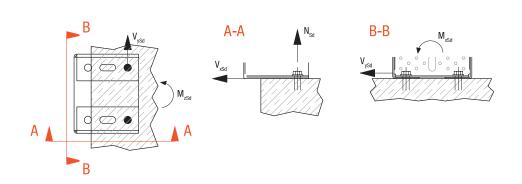
| Art. Nr. | Verbindungsmittel |                | Nagel-/<br>Bolzenbild |           |                    |           |                  |                  |
|----------|-------------------|----------------|-----------------------|-----------|--------------------|-----------|------------------|------------------|
|          | Massivbauteil     | Holzbauteil 1) |                       | $R_{1,k}$ | R <sub>2/3,k</sub> | $R_{4,k}$ | R <sub>5,k</sub> | R <sub>6,k</sub> |
|          | 2 Bolzen M12      | 13 CNA4,0x35   | А                     | 16,3      | 15,3               | 21,1      | 5,0              | _                |
|          | 2 Bolzen M12      | 13 CNA4,0x35   | В                     | 8,8       | 11,9               | 6,0       | 11,4             | 21,2             |
| ACW155   | 2 Bolzen M12      | 13 CNA4,0x35   | С                     | 8,8       | 8,9                | 6,0       | 11,4             | 21,2             |
| ACW 100  | 2 Bolzen M12      | 1 ESCR Ø10x140 | D                     | _         | _                  | 7,5       | 5,7              | _                |
|          | 2 Bolzen M12      | 2 ESCR Ø8x100  | E                     | -         | _                  | 7,5       | 3,92             | 7,73             |
|          | 2 Bolzen M12      | 6 CNA4,0x35    | F                     | _         | _                  | 7,5       | 2,64             | 10,1             |

<sup>&</sup>lt;sup>1)</sup> Andere Nagel- und Schraubenlängen können verwendet werden, solange die Tragfähigkeiten mit den angegebenen Verbindungsmitteln gleichwertig sind.








Die Anschlussbilder D bis F können auch für Stützenanschlüsse verwendet werden.

#### Bolzenfaktoren

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Tabelle 3

| Art. Nr. | Nagel-/<br>Bolzenbild |                        | Bolzenfaktoren          |                          |                          |                    |                        |                       |                        |                        |
|----------|-----------------------|------------------------|-------------------------|--------------------------|--------------------------|--------------------|------------------------|-----------------------|------------------------|------------------------|
|          |                       | F <sub>1</sub>         |                         | F <sub>2</sub>           |                          | $F_4$              |                        | <b>F</b> <sub>5</sub> |                        | F <sub>6</sub>         |
|          |                       | $N_{\mathrm{Sd}}$      | <b>V</b> <sub>ySd</sub> | M <sub>xSd</sub>         | M <sub>zSd</sub>         | $\mathbf{V}_{xSd}$ | N <sub>Sd</sub>        | V <sub>xSd</sub>      | N <sub>Sd</sub>        | N <sub>sd</sub>        |
|          | А                     | F <sub>1,d</sub> x 1,1 | F <sub>2,d</sub>        | F <sub>2,d</sub> x 27 mm | F <sub>2,d</sub> x 69 mm | $F_{4,d}$          | F <sub>4,d</sub> x 1,5 | F <sub>5,d</sub>      | F <sub>5,d</sub> x 3,0 | -                      |
|          | В                     | F <sub>1,d</sub> x 3,7 | F <sub>2,d</sub>        | F <sub>2,d</sub> x 92 mm | F <sub>2,d</sub> x 59 mm | $F_{4,d}$          | _                      | F <sub>5,d</sub>      | F <sub>5,d</sub> x 1,3 | F <sub>6,d</sub> x 0,7 |
| ACW155   | С                     | F <sub>1,d</sub> x 3,7 | F <sub>2,d</sub>        | F <sub>2,d</sub> x 82 mm | F <sub>2,d</sub> x 59 mm | $F_{4,d}$          | _                      | F <sub>5,d</sub>      | F <sub>5,d</sub> x 1,3 | F <sub>6,d</sub> x 0,7 |
| AGW155   | D                     | -                      | _                       | _                        | _                        | $F_{4,d}$          | _                      | F <sub>5,d</sub>      | F <sub>5,d</sub> x 0,7 | -                      |
|          | E                     | _                      | _                       | _                        | _                        | $F_{4,d}$          | _                      | F <sub>5,d</sub>      | F <sub>5,d</sub> x 0,9 | F <sub>6,d</sub> x 0,7 |
|          | F                     | _                      | _                       | _                        | _                        | $F_{4,d}$          | _                      | F <sub>5,d</sub>      | F <sub>5,d</sub> x 1,3 | F <sub>6,d</sub> x 0,7 |



#### Winkelverbinder - ADR / AT





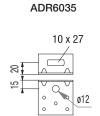
ADR Winkelverbinder können für Holz/Beton, Holz/Mauerwerk, Holz/Stahl oder Holz/Holz Verbindungen eingesetzt werden. Das Langloch in den Winkeln ADR6191 und 6292 bietet eine Montageausgleichmöglichkeit.

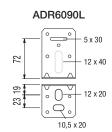
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

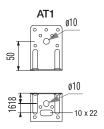
**Korrosionsschutz:**  $275 \text{ g/m}^2$  beidseitig – entsprechend einer Zinkschichtdicke von ca.  $20 \mu m$ .

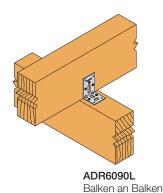
**Befestigung:** Die Befestigung erfolgt mit CNA4,0xℓ Kammnägeln oder CSA5,0xℓ Schrauben. Zur Befestigung an Beton werden M8 bzw. M10 Ankerbolzen eingesetzt.

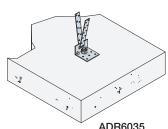


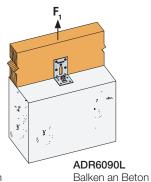




Produktabmessungen


Tabelle 1


| Art. Nr. |    | Abmessi | ung [mm] |     | Anzahl Löcher Ø5 | [mm] in Schenkel |
|----------|----|---------|----------|-----|------------------|------------------|
|          | А  | В       | С        | t   | А                | В                |
| ADR6035  | 37 | 60      | 60       | 2,5 | 5                | -                |
| ADR6090L | 90 | 60      | 60       | 2   | 5                | 4                |
| AT1      | 76 | 48      | 55       | 1,5 | 7                | 4                |














ADR6035 Zuglaschenanschluss an Beton

# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

#### Winkelverbinder - ADR / AT



#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

Tabelle 3

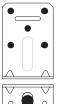
| Art. Nr.  | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss zwei sich kreuzende Hölzer |                    |  |
|-----------|-------------------|---------------------------------------------------------------------------------------------------|--------------------|--|
|           |                   | R <sub>1,k</sub>                                                                                  | R <sub>2/3,k</sub> |  |
| CNA4,0x40 |                   | 2,6 / k <sub>mod</sub> 0,3                                                                        | 3                  |  |
| ADR6090L  | CNA4,0x50         | min. von:<br>3,1 / k <sub>mod</sub> 0,3; 3,0 / k <sub>mod</sub>                                   | 3,8                |  |
|           | CNA4,0x60         | min. von:<br>3,6 / k <sub>mod</sub> <sup>0,3</sup> ; 3,0 / k <sub>mod</sub>                       | 4,2                |  |
| AT1       | CNA4,0x40         | 2,5                                                                                               | 3,9                |  |

#### Ausnagelungsbilder

#### ADR6090L








AT1

Holz/Holz

#### Charakteristische Werte der Tragfähigkeit

| Art. Nr. | Verbindungsmittel           | Charakteristische Werte der Tragfähigkeit [k<br>2 Winkel – Anschluss Balken an Beton |                        |  |
|----------|-----------------------------|--------------------------------------------------------------------------------------|------------------------|--|
|          |                             | $R_{\scriptscriptstyle 1,k}$                                                         | R <sub>2/3,k</sub>     |  |
| ADR6090L | CNA4,0x50 +<br>1 Bolzen M10 | 9,9 / K <sub>mod</sub>                                                               | 5,2                    |  |
| AT1      | CNA4,0x40 +<br>1 Bolzen M8  | 7,5 / k <sub>mod</sub>                                                               | 5,6 / k <sub>mod</sub> |  |





Holz/Beton

#### Charakteristische Werte der Traafähigkeit

| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>1 Winkel – Anschluss Zugband an Beton |
|----------|-------------------|-----------------------------------------------------------------------------------------|
|          |                   | $R_{t,k}$                                                                               |
| ADR6035  | 1 Bolzen M10      | 5,2 / k <sub>mod</sub>                                                                  |

#### ADR6035



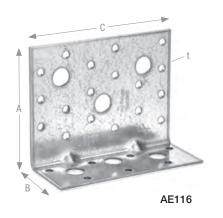


#### Bolzenfaktoren

#### Tabelle 5

Tabelle 4

| Art. Nr. | Bolzenfaktoren   |                    |                      |
|----------|------------------|--------------------|----------------------|
|          |                  | bei F <sub>1</sub> | bei F <sub>2/3</sub> |
| ADR6090L | K <sub>ax</sub>  | 1,13               | _                    |
| ADROUGUL | k <sub>lat</sub> | -                  | 0,5                  |
| AT1      | k <sub>ax</sub>  | 1,17               | 0,65                 |
| AII      | k <sub>lat</sub> | -                  | 0,5                  |
| ADDGOOF  | k <sub>ax</sub>  | 2,2                | _                    |
| ADR6035  | k <sub>lat</sub> | _                  | _                    |


#### Anwendungshinweis:

Der Bolzennachweis ist in der Einleitung zu diesem Kapitel erläutert und wird mit den hier, in Tabelle 5, angegebenen Faktoren geführt.

Winkelverbinder

#### Winkelverbinder – AE





AE Winkelverbinder sind sehr vielseitig einsetzbar und werden u.a. für Holz/Holz Anschlüsse oder zur Befestigung von Holzkonstruktionen an Beton, Stahl oder Mauerwerk verwendet. AE Winkelverbinder sind in alle Richtungen belastbar.

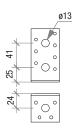
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von ca. 20 µm.

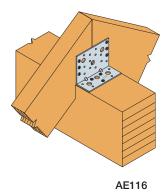
Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Zur Befestigung auf Beton werden M12 Ankerbolzen mit US40x40x10 Scheiben verwendet. Bei einer Belastung ausschließlich in F<sub>2</sub>/F<sub>3</sub> Richtung, kann auf die US40x40x10 Scheibe verzichtet werden.







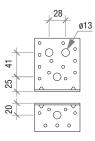




Produktabmessungen

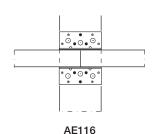
Art. Nr. Anzahl Löcher Ø5 [mm] in Schenkel Abmessung [mm] С В Α В 7 AE48 90 48 48 3,0 4 AE76 90 48 76 3,0 12 7 AE116 48 3,0 18 7

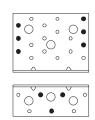
#### Tabelle 1




AE48

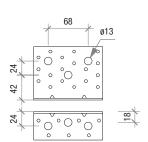



#### Anwendungshinweis:


Der Winkelverbinder AE116 ist gemäß ETA-06/0106 für den dargestellten Anschluss von Sparren an Firstpfetten einsetzbar. Das Nagelbild ist zu beachten. Statische Werte sind in der o.g. ETA, Tabelle D17-5 aufgeführt.

#### AE76




#### Nagelbilder beim Sparrenanschluss





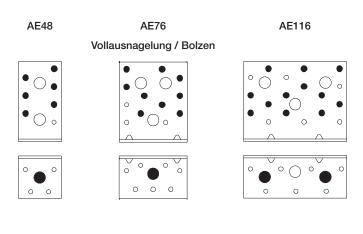
AE116

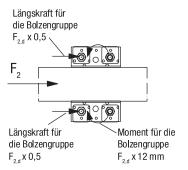
#### AE116

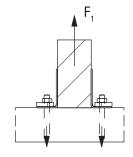


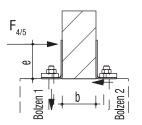
#### Winkelverbinder - AE




#### Charakteristische Werte der Tragfähigkeit


Tabelle 2


| Art. Nr. | Verbindungsmittel           | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss Balken an Beton |                    |                                                                             | Bolzen bz                            | r Bolzenberechnung<br>w. beim AE116 auf<br>e Winkel für die Kraf |                                                                                |
|----------|-----------------------------|----------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|
|          |                             | $R_{i,k}$                                                                              | R <sub>2/3,k</sub> | R <sub>4,k</sub> 1)                                                         | $\mathbf{R}_{1,d}$ $\mathbf{k}_{ax}$ | R <sub>2/3,d</sub> k <sub>lat</sub>                              | $R_{4/5,d} k_{ax}/k_{lat}$                                                     |
| AE48     | CNA4,0x40 +<br>1 Bolzen M12 | min. von:<br>14,9; 12,6 / k <sub>mod</sub>                                             | 2,1                | 4,2 / k <sub>mod</sub> <sup>0,6</sup>                                       | 0,62                                 | 0,5                                                              | Bolzen 1 k <sub>ax</sub> $1,24 \text{ x} \qquad \frac{\text{e}}{(\text{b}+7)}$ |
| 7.1.0    | CNA4,0x60 +<br>1 Bolzen M12 | 12,6 / k <sub>mod</sub>                                                                | 3,5                | min. von:<br>4,2 / k <sub>mod</sub> <sup>0,6</sup> ; 4,9 / k <sub>mod</sub> | 3,02                                 | 5,0                                                              | Bolzen 2 k <sub>lat</sub>                                                      |
| AF76     | CNA4,0x40 +<br>1 Bolzen M12 | min. von:<br>22,8; 16,8 / k <sub>mod</sub>                                             | 7,6                | min. von:<br>9,6; 7,0 / k <sub>mod</sub>                                    | 0,54                                 | 0,5                                                              | $\frac{\text{Bolzen 1 k}_{ax}}{1,08 \text{ x}} \frac{\text{e}}{(\text{b}+7)}$  |
| ALTO     | CNA4,0x60 +<br>1 Bolzen M12 | 16,8 / k <sub>mod</sub>                                                                | 11,1               | 7,0 / k <sub>mod</sub>                                                      | 0,04                                 | 0,0                                                              | Bolzen 2 k <sub>lat</sub><br>1,0                                               |
| AE116    | CNA4,0x40 +<br>1 Bolzen M12 | 25,2                                                                                   | 25,9               | 10,1 / k <sub>mod</sub> <sup>0,25</sup>                                     | 0,65                                 | 0,5<br>zusätzlich ein                                            | $\frac{\text{Bolzen 1 k}_{ax}}{1,30 \text{ x}  \frac{\text{e}}{(\text{b}+7)}}$ |
| ALTIU    | CNA4,0x60 +<br>1 Bolzen M12 | min. von:<br>38,1; 28,1 / k <sub>mod</sub>                                             | 27,8               | min. von:<br>15,7; 11,5 / k <sub>mod</sub>                                  | 0,03                                 | Moment um die<br>Bolzengruppe mit<br>F <sub>2,d</sub> x 12 mm    | Bolzen 2 k <sub>lat</sub>                                                      |


¹¹ b = 80 und e = 120. Die Bolzen M12 müssen zusammen mit U-Scheiben US40x50x10 verbaut werden. Müssen ausschließlich Kräfte in Richtung F₂₂ aufgenommen werden, können Ankerbolzen mit U-Scheiben Ø24 x 3 mm verwendet werden. Für den AE116 sind die 2 Bolzen eines Winkels als Gruppe anzusehen.

#### Ausnagelungsbilder zu Tabelle 2









#### Winkelverbinder - AE



#### Charakteristische Werte der Tragfähigkeit

Tabelle 3

| Art. Nr. | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss zwei sich kreuzende Hölzer<br>Vollausnagelung |                    |                                        |
|----------|-------------------|----------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------|
|          |                   | R <sub>1,k</sub>                                                                                                     | R <sub>2/3,k</sub> | R <sub>4/5,k</sub> 1)                  |
| AE48     | CNA4,0x40         | 3,0                                                                                                                  | 4,0                | 1,3 / k <sub>mod</sub> 0,25            |
| AE48     | CNA4,0x60         | 4,9                                                                                                                  | 6,0                | 2,0 / k <sub>mod</sub> <sup>0,25</sup> |
| AE76     | CNA4,0x40         | 5,9                                                                                                                  | 11,6               | 2,9 / k <sub>mod</sub> 0,25            |
|          | CNA4,0x60         | 9,8                                                                                                                  | 15,7               | 4,2 / k <sub>mod</sub> <sup>0,25</sup> |
| AE116    | CNA4,0x40         | 5,9                                                                                                                  | 16,5               | 3,2 / k <sub>mod</sub> 0,25            |
|          | CNA4,0x60         | 9,8                                                                                                                  | 23,0               | 4,7 / k <sub>mod</sub> 0,25            |

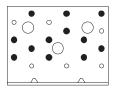
 $<sup>^{1)}</sup>$  b = 80 und e = 120

#### Ausnagelungsbilder zu Tabelle 3

#### Vollausnagelung

AE48












AE116





#### Beispiel:

Balken 80 x 140 mm an Balken, gewählter Verbinder: 2 Stück AE76 Vollausnagelung mit CNA4,0x60

#### Belastung:

Werte aus der Tabelle 3

 $R_{1,d} = 9.8 \times 0.9 / 1.3 = 6.79 \text{ kN}$ 

 $R_{2/3,d} = 15,7 \times 0,9 / 1,3 = 10,87 \text{ kN}$ 

 $R_{4/5,d} = (4,2 / 0,9^{0,25}) \times 0,9 / 1,3 = 2,99 \text{ kN}$ 

Nachweis:

$$\sqrt{\left|\frac{3,2}{6,79} + \frac{0,5}{2,99}\right|^2 + \left|\frac{5,9}{10,87}\right|^2} = 0,84 < 1,0$$

#### Winkelverbinder - AJ





AJ Winkelverbinder sind für Holz/Holz Anschlüsse in tragenden Konstruktionen geeignet.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Tabelle 2

Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.





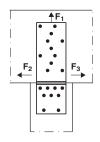


ETA-06/0106 DoP-e06/0106

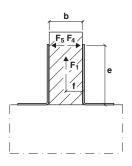
#### Produktabmessungen

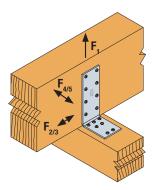
| Produktabme | essun          |    | Tabelle 1 |     |                  |                  |
|-------------|----------------|----|-----------|-----|------------------|------------------|
| Art. Nr.    | Abmessung [mm] |    |           |     | Anzahl Löcher Ø5 | [mm] in Schenkel |
|             | A              | В  | С         | t   | А                | В                |
| AJ60416     | 164            | 84 | 60        | 4,0 | 8                | 7                |
| AJ80416     | 164            | 84 | 80        | 4,0 | 11               | 9                |
| AJ99416     | 164            | 84 | 100       | 4,0 | 12               | 11               |

#### Charakteristische Werte der Tragfähigkeit


| Art. Nr. | Verbindungsmittel <sup>2)</sup> | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss zwei sich kreuzende Hölzer<br>Vollausnagelung |                    |                                        |  |
|----------|---------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------|--|
|          |                                 | R <sub>1,k</sub>                                                                                                     | R <sub>2/3,k</sub> | R <sub>4/5,k</sub> 1)                  |  |
| AJ60416  | CNA4,0x40 +<br>CNA4,0x60        | 11,1 / k <sub>mod</sub> 0,2                                                                                          | 7,8                | 4,8 / k <sub>mod</sub> <sup>0,2</sup>  |  |
| AJ80416  | CNA4,0x40 +<br>CNA4,0x60        | 15,3 / k <sub>mod</sub> 0,2                                                                                          | 10,0               | 6,3 / k <sub>mod</sub> <sup>0,2</sup>  |  |
| AJ99416  | CNA4,0x40 +<br>CNA4,0x60        | 19,3 / k <sub>mod</sub> 0,1                                                                                          | 13,0               | 8,3 / k <sub>mod</sub> <sup>0,25</sup> |  |




<sup>3</sup> Die Ausnagelung der Winkel erfolgt im aufrechten Schenkel A mit CNA4,0x40 und im horizontalen Schenkel B mit CNA4,0x60 Kammnägeln.


#### Anwendungshinweis:

Werden bei einer Vollausnagelung alle Nagellöcher verwendet, wird kein Nagelbild gezeigt.



AJ80416





AJ60416

Winkelverbinder

#### Winkelverbinder - AG



**Z275** 20 μm

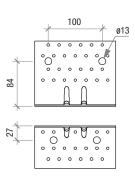


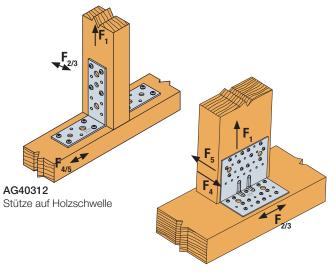
AG Winkelverbinder sind für den Anschluss von Holzbauteilen an Holz oder Beton konzipiert. Sie können sowohl Zug- als auch Schublasten aufnehmen. Bei Verwendung unterschiedlicher Ausnagelungen können Balken oder Stützen angeschlossen werden.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Tabelle 1

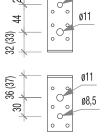
**Korrosionsschutz:** 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von ca. 20 µm.


**Befestigung:** Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Zur Befestigung auf Beton werden für die AG922 zwei M12 Ankerbolzen verwendet bzw. für die AG40xxx M10 Ankerbolzen mit US60/60/6G-B Scheibe.

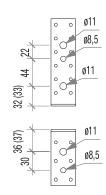



#### Produktabmessungen

| Art. Nr. | Abmessung [mm] |    |     |     | Anzahl Löcher Ø5 | [mm] in Schenkel |
|----------|----------------|----|-----|-----|------------------|------------------|
|          | A              | В  | С   | t   | А                | В                |
| AG40312  | 119            | 91 | 40  | 3,0 | 10               | 6                |
| AG40314  | 141            | 91 | 40  | 3,0 | 12               | 6                |
| AG40412  | 120            | 92 | 40  | 4,0 | 10               | 6                |
| AG40414  | 142            | 92 | 40  | 4,0 | 12               | 6                |
| AG922    | 121            | 79 | 150 | 2,5 | 26               | 18               |


#### AG922






AG922 Stütze auf Holzschwelle

### AG40312 AG40412



() bei AG404...



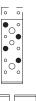
AG40314

AG40414

#### Winkelverbinder - AG



#### Charakteristische Werte der Tragfähigkeit


Tabelle 2

| Art. Nr.        | Verbindungsmittel | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss zwei sich kreuzende Hölzer<br>bzw. Stütze auf Schwelle |                    |                             |  |
|-----------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|--|
|                 |                   | $R_{1,k}$                                                                                                                     | R <sub>2/3,k</sub> | R <sub>4/5,k</sub> 1)       |  |
| AG40312         | CNA4,0x40         | 3,0                                                                                                                           | 3,3                | 1,5 / k <sub>mod</sub> 025  |  |
| bzw.<br>AG40314 | CNA4,0x60         | 4,2 / k <sub>mod</sub> 0,3                                                                                                    | 5,0                | 2,1 / k <sub>mod</sub> 0,3  |  |
| AG40412         | CNA4,0x40         | 3,0                                                                                                                           | 3,2                | 1,6 / k <sub>mod</sub> 0,25 |  |
| bzw.<br>AG40414 | CNA4,0x60         | 4,9                                                                                                                           | 4,4                | 2,5 / k <sub>mod</sub> 0,1  |  |

<sup>1)</sup> b = 80 und e = 120

#### Nagel-/Bolzenbilder zu Tabelle 2 und 3

#### AG40xxx











Balken/Beton

#### Charakteristische Werte der Tragfähigkeit

| Charakteristische Werte der Tragfähigkeit Tabelle |                             |                                                                                               |                        |                                          |  |  |  |
|---------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------|------------------------|------------------------------------------|--|--|--|
| Art. Nr.                                          | Verbindungsmittel           | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Winkel – Anschluss Balken/Stütze an Beton |                        |                                          |  |  |  |
|                                                   |                             | $R_{_{1,k}}$                                                                                  | R <sub>2/3,k</sub>     | R <sub>4/5,k</sub> 1)                    |  |  |  |
| AG40412                                           | CNA4,0x40 +<br>1 Bolzen M10 | min. von:<br>10,5; 8,1 / k <sub>mod</sub>                                                     | 0,9                    | min. von:<br>3,8; 3,4 / k <sub>mod</sub> |  |  |  |
| bzw.<br>AG40414                                   | CNA4,0x60 +<br>1 Bolzen M10 | 8,1 / k <sub>mod</sub>                                                                        | 1,0 / k <sub>mod</sub> | min. von:<br>4,7; 3,4 / k <sub>mod</sub> |  |  |  |

<sup>1)</sup> b = 80 und e = 120

#### Bolzenfaktoren

Tabelle 4

| Art. Nr.        | Bolzenfaktoren |                  |                  |                  |  |  |
|-----------------|----------------|------------------|------------------|------------------|--|--|
|                 |                |                  | Bolzen 1         | Bolzen 2         |  |  |
|                 | F <sub>1</sub> | F <sub>2/3</sub> | F <sub>4/5</sub> | F <sub>4/5</sub> |  |  |
| AG40412         | 0,93           | 1,69             | 1,85 x (e/b)     | -                |  |  |
| bzw.<br>AG40414 | -              | 0,5              | _                | 1,0              |  |  |

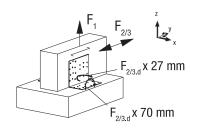

#### Charakteristische Werte der Tragfähigkeit

Tabelle 5

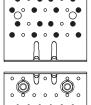
| Art. Nr. | Nagelbild | Verbindungs-<br>mittel   | Charakteristische Werte der Tragfähigkeit [kl<br>2 Winkel – Anschluss siehe Nagel-/Bolzenbil |                    |
|----------|-----------|--------------------------|----------------------------------------------------------------------------------------------|--------------------|
|          |           |                          | $R_{i,k}$                                                                                    | R <sub>2/3,k</sub> |
|          | 1         | CNA4,0x50                | 18,5                                                                                         | 29,5               |
| AC000    | 2         | CNA4,0x50                | 19,5                                                                                         | -                  |
| AG922    | 3         | CNA4,0x50 + 2 Bolzen M12 | 30,6                                                                                         | 48,2               |
|          | 4         | CNA4,0x50 + 2 Bolzen M12 | 37,5                                                                                         | -                  |

Anschluss Riegel an Stütze siehe ETA-06/0106

# Stütze



#### Nagel-/Bolzenbilder zu Tabelle 5



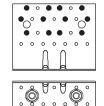






Bild 1 Balken an Balken

Bild 2 Stütze auf Schwelle





0 0 0 0 0 0

Bild 3 Balken an Beton

Bild 4 Stütze an Beton

0 0 0 0 0 0

#### Anwendungshinweis zu AG922:

Bei Nagelbild 3 muss für die Bolzenberechnung folgendes berücksichtigt werden:

$$M_{z,F2.d} = F_{2.d} \times 27 \text{ mm}$$
  
 $M_{x,F2.d} = F_{2.d} \times 70 \text{ mm}$ 

Winkelverbinder

#### Winkelverbinder – **AKR**





AKR Winkelverbinder sind ideal zum Anschluss von Balken und Stützen an Beton. Stahl oder Mauerwerk. In bestimmten Fällen ist der Anschluss an Holz ebenso möglich. Alle Größen dürfen in alle Richtungen belastet werden.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Oder Stahlsorte: S235 JR gemäß EN10025.

Korrosionsschutz (S250 GD + Z275): 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von ca. 20 µm.

Korrosionsschutz (S235 JR): nach Bearbeitung rundumfeuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

Befestigung: Der Anschluss am Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Zur Befestigung auf Beton werden M12 Ankerbolzen

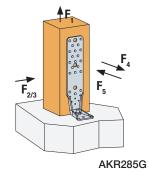


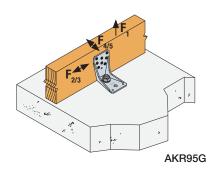


Tabelle 1

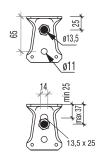




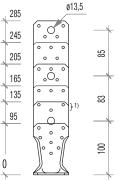






Produktabmessungen

Art. Nr. - Material und Blechdicke t [mm] Abmessung [mm] Anzahl Löcher Ø5 [mm] in Schenkel S235JR S250GD 1.4401 (V4A) 1) 1.4529 (HCR) 1) + Z275 В С В Α Α 4,0 3,0 3,0 AKR95G-B AKR95x3 AKR95S 2 95 85 65 9 AKR95LG-B AKR95x3L AKR95LS 9 2 95 85 65 AKR135G-B AKR135x3 AKR135S 2 135 85 65 14 2 AKR135LG-B AKR135x3L AKR135LS 135 85 65 14 AKR165x3 AKR165S 2 AKR165G-B 165 15 85 65 AKR165LG-B AKR165x3L AKR165LS 165 65 15 2 85 AKR205G-B AKR205x3 AKR205S 205 85 65 20 2 2 AKR205LG-B AKR205x3L AKR205LS 205 85 65 20 AKR245G-B AKR245x3 AKR245S 245 85 65 22 2 AKR245LG-B AKR245x3L AKR245LS 245 85 65 22 2 AKR285G-B AKR285x3 AKR285S 285 85 65 26 2 AKR285LG-B AKR285x3L AKR285LS 285 26 2






Lage des Bolzen



AKR Typ L

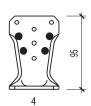


1) diese Löcher Ø5 mm nicht bei AKR245 und AKR285

<sup>1)</sup> Keine Lagerware

#### Winkelverbinder - AKR

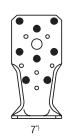
#### Nagelbilder gemäß ETA-07/0285

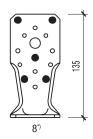

Die mit  $^{\star}$  versehenen Ausführungen können auch für Stützenanschlüsse verwendet werden.

#### AKR95 / ...L



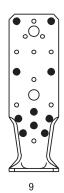





AKR135 / ...L



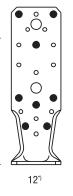


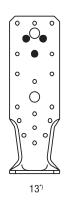


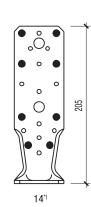




AKR205 / ...L


optional AKR165/..L

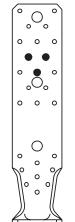




C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

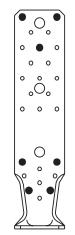




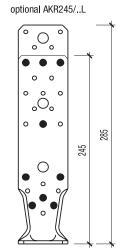








#### AKR285 / ...L

optional AKR245/..L


245 15 16\*) 17\*)



18\*)



19\*)



20\*)

#### Winkelverbinder – **AKR**

## SIMPSON Strong-Tie

#### Werte für Berechnungen und charakteristische Werte

Tabelle 2

| Art. Nr.           | Nagelbild | Anzahl<br>Nägel (n) | Tabelle für Anschlüsse mit 2 AKR Winkelverbinder |                       |                                                                                             |                       |                    |                    |
|--------------------|-----------|---------------------|--------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------|-----------------------|--------------------|--------------------|
|                    |           |                     | Werte für (                                      | die Formeln [1] und   | nd [2] zur Berechnung von R <sub>1,k</sub> [kN] Charakteristische Wer<br>Tragfähigkeit [kN] |                       |                    |                    |
|                    |           |                     | CNA                                              | 4,0x50                | CNA                                                                                         | 1,0x60                | CNA4,0x50          | CNA4,0x60          |
|                    |           |                     | R <sub>bend,nail,k</sub>                         | R <sub>1,nail,k</sub> | R <sub>bend,nail,k</sub>                                                                    | R <sub>1,nail,k</sub> | R <sub>2/3,k</sub> | R <sub>2/3,k</sub> |
| AKR95              | 1         | 8                   | 17,60                                            | 22,64                 | 22,00                                                                                       | 26,48                 | 6,2                | 6,9                |
| AKR95              | 2         | 5                   | 7,97                                             | 14,78                 | 9,96                                                                                        | 17,19                 | 4,4                | 5,0                |
| AKR95              | 3         | 5                   | 16,83                                            | 13,34                 | 21,03                                                                                       | 15,71                 | 4,0                | 4,5                |
| AKR95              | 4         | 4                   | 13,50                                            | 10,70                 | 16,88                                                                                       | 12,59                 | 3,8                | 4,2                |
| AKR135             | 5         | 13                  | 11,58                                            | 40,69                 | 14,48                                                                                       | 46,92                 | 10,1               | 11,2               |
| AKR135             | 6         | 9                   | 11,58                                            | 27,21                 | 14,48                                                                                       | 31,54                 | 7,5                | 8,4                |
| AKR135             | 7         | 8                   | 5,24                                             | 26,13                 | 6,55                                                                                        | 29,94                 | 7,0                | 7,9                |
| AKR135             | 8         | 5                   | 5,24                                             | 16,05                 | 6,55                                                                                        | 18,44                 | 4,9                | 5,5                |
| AKR205             | 9         | 10                  | 11,58                                            | 24,71                 | 14,48                                                                                       | 29,33                 | 8,3                | 9,5                |
| AKR205             | 10        | 14                  | 11,58                                            | 42,86                 | 14,48                                                                                       | 49,59                 | 10,0               | 11,8               |
| AKR165; AKR205     | 11        | 11                  | 11,58                                            | 37,14                 | 14,48                                                                                       | 42,33                 | 9,0                | 10,4               |
| AKR205             | 12        | 8                   | 5,24                                             | 18,64                 | 6,55                                                                                        | 22,25                 | 6,2                | 7,2                |
| AKR205             | 13        | 3                   |                                                  | Siehe ETA-07/02       | 285 Tabelle D61-4                                                                           | 1                     | _                  | _                  |
| AKR205             | 14        | 8                   | 2,14                                             | 22,08                 | 2,68                                                                                        | 25,90                 | 7,0                | 8,0                |
| AKR285             | 15        | 25                  | 11,58                                            | 58,98                 | 14,48                                                                                       | 70,31                 | 11,6               | 14,1               |
| AKR245             | 16        | 18                  | 5,24                                             | 50,40                 | 6,56                                                                                        | 59,00                 | 7,6                | 9,2                |
| AKR285             | 16        | 22                  | 5,24                                             | 54,19                 | 6,55                                                                                        | 64,34                 | 7,6                | 9,3                |
| AKR285             | 17        | 14                  | 5,24                                             | 36,23                 | 6,55                                                                                        | 42,80                 | 7,3                | 8,8                |
| AKR285             | 18        | 3                   | ,                                                |                       | 285 Tabelle D61-4                                                                           | ,                     | _                  | _                  |
| AKR285             | 19        | 7                   | 3,26                                             | 13,71                 | 4,07                                                                                        | 16,58                 | 5,8                | 6,9                |
| AKR245; AKR285     | 20        | 9                   | 4,18                                             | 18,71                 | 5,22                                                                                        | 22,53                 | 7,4                | 8,8                |
| AKR95L             | 1         | 8                   | 11,89                                            | 17,40                 | 14,87                                                                                       | 20,89                 | 5,6                | 6,4                |
| AKR95L             | 2         | 5                   | 5,38                                             | 11,52                 | 6,73                                                                                        | 13,76                 | 3,9                | 4,5                |
| AKR95L             | 3         | 5                   | 11,37                                            | 10,09                 | 14,21                                                                                       | 12,18                 | 3,6                | 4,1                |
| AKR95L             | 4         | 4                   | 9,12                                             | 8,09                  | 11,40                                                                                       | 9,77                  | 3,3                | 3,8                |
| AKR135L            | 5         | 13                  | 7,83                                             | 32,34                 | 9,78                                                                                        | 38,36                 | 9,1                | 10,3               |
| AKR135L            | 6         | 9                   | 7,83                                             | 21,35                 | 9,78                                                                                        | 25,45                 | 6,6                | 7,6                |
| AKR135L            | 7         | 8                   | 3,54                                             | 21,13                 | 4,43                                                                                        | 24,91                 | 6,2                | 7,1                |
| AKR135L            | 8         | 5                   | 3,54                                             | 12,89                 | 4,43                                                                                        | 15,23                 | 4,2                | 4,9                |
| AKR205L            | 9         | 10                  | 7,83                                             | 18,36                 | 9,78                                                                                        | 22,29                 | 7,0                | 8,2                |
| AKR205L            | 10        | 14                  | 7,83                                             | 33,79                 | 9,78                                                                                        | 40,20                 | 8,0                | 9,6                |
| AKR165L; AKR205L   | 11        | 11                  | 7,83                                             | 30,50                 | 9,78                                                                                        | 35,76                 | 7,5                | 8,8                |
| AKR205L            | 12        | 8                   | 3,54                                             | 13,69                 | 4,43                                                                                        | 16,69                 | 5,0                | 5,9                |
| AKR205L            | 13        | 3                   | 0,04                                             |                       | 285 Tabelle D61-4                                                                           | 10,00                 | -                  | _                  |
| AKR205L            | 14        | 8                   | 1,45                                             | 16,85                 | 1,81                                                                                        | 20,27                 | 5,9                | 6,9                |
| AKR285L            | 15        | 25                  | 7,83                                             | 43,42                 | 9,78                                                                                        | 52,87                 | 8,7                | 10,7               |
| AKR245L            | 16        | 18                  | 3,54                                             | 38,60                 | 4,42                                                                                        | 46,38                 | 5,6                | 6,8                |
| AKR245L<br>AKR285L | 16        | 22                  | 3,54                                             | 40,23                 | 4,42                                                                                        | 48,85                 | 5,6                | 6,9                |
| AKR285L            | 17        | 14                  | 3,54                                             | 27,20                 | 4,43                                                                                        | 32,91                 | 5,5                | 6,7                |
| AKR285L            | 18        |                     | 3,34                                             |                       | 285 Tabelle D61-4                                                                           | 32,31                 | -                  | 0,7                |
|                    |           | 3                   | 2.00                                             |                       |                                                                                             | 10.00                 |                    |                    |
| AKR285L            | 19        | 7                   | 2,20                                             | 9,81                  | 2,75                                                                                        | 12,06                 | 4,5                | 5,4                |

#### Winkelverbinder – **AKR**

SIMPSON Strong-Tie

Formel [1] für 2 AKR mit Blechdicke 4,0 mm

$$R_{1,k} = \min \left\{ \begin{array}{c} R_{1,\text{nail},k} \\ \\ \underline{ 42,8 \text{ kN}} \\ \\ \underline{ } \\ K_{\text{mod}} \end{array} \right. + R_{\text{bend,nail},k}$$


Formel [2] für 2 AKR mit Blechdicke 3,0 mm

$$R_{1,k} = min \begin{cases} R_{1,nall,k} \\ 25,0 \text{ kN} \\ K_{mod} \end{cases} + R_{bend,nall,k}$$

#### Charakteristische Werte der Tragfähigkeit Tabelle 3

| Art. Nr.                                          | Verbindungsmittel<br>und Nagelbild | Charakteristische Werte<br>der Tragfähigkeit [kN]<br>Anschluss mit 2 AKR |
|---------------------------------------------------|------------------------------------|--------------------------------------------------------------------------|
|                                                   | ≥ CNA4,0x40                        | R <sub>4/5,k</sub> 1)                                                    |
| Alle AKR (ohne Langloch)<br>mit Blechdicke 4,0 mm | Alle Nagelbilder                   | 26,5 / k <sub>mod</sub>                                                  |
| Alle AKR (ohne Langloch)<br>mit Blechdicke 3,0 mm | Alle Nagelblidel                   | 15,8 / k <sub>mod</sub>                                                  |

 $<sup>^{1)}</sup>$  Wirkt eine Last  $F_{4/5}$ , ergibt sich auf der Zugseite (im Bild bei Bolzen 1) eine zusätzliche resultierende Beanspruchung von:  $F_{1,d}^* = F_{4/5,d} \times (e - 16,5 \text{ mm}) / (b + 83 \text{ mm}).$ Diese Last muss zur Last F<sub>1,d</sub> addiert werden.



#### Bolzenfaktoren

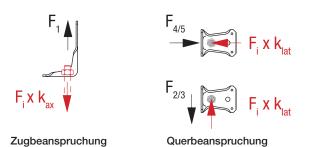
Tabelle 4

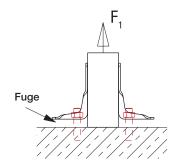
|                  | Lastrichtung    |                        | ren zur<br>nung bei 2 AKR |
|------------------|-----------------|------------------------|---------------------------|
|                  |                 | <b>k</b> <sub>ax</sub> | <b>k</b> <sub>lat</sub>   |
| F <sub>1</sub>   | Bolzen 1 und 2  | 0,5                    | 0,0                       |
| F <sub>2/3</sub> | Bolzen 1 und 2  | 0,2                    | 0,5                       |
| Е                | Bolzen 1 aus F* | 1,0                    | 0,0                       |
| F <sub>4/5</sub> | Bolzen 2        | 0,5                    | 1,0                       |

Die Bolzen sind gesondert nachzuweisen.

Zugbeanspruchung im Bolzen:  $F_{ax,bolt,d} = F_{i,d} x k_{ax}$ 

Querbeanspruchung im Bolzen:  $F_{lat,bolt,d} = F_{i,d} \times k_{lat}$ 


Die Richtungen sind entsprechend zu berücksichtigen, siehe Bild

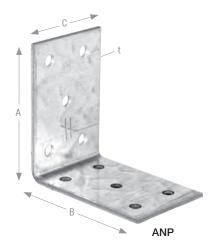

Der Fußzeiger "ax" steht für die axiale Kraftrichtung, der Fußzeiger "lat" für die Querbeanspruchung.

#### Anwendungshinweis:

Bei der Lastrichtung F, ist eine Abstandsmontage der AKR Winkelverbinder zum Auflager ausführbar.

Dieses ermöglicht z.B. die Verbindung eines Stiels an ein Auflager durch eine Schwelle hindurch, bei der sich nach dem Schwinden eine Fuge bilden kann, oder wenn AKR konstruktionsbedingt nicht direkt auf einem Auflager angeordnet werden können. Bei einer Abstandsmontage sind die Angaben des Bolzenherstellers zu beachten. Ggf. ist der Winkel beim Anziehen des Bolzens temporär zu unterstützen, weil eine zu hohe Kraft aus dem Anzugsdrehmoment des Bolzens nicht durch den Winkel aufgenommen werden kann.






#### Hinweis:

Statische Werte zu einseitigen Anschlüssen und weitere umfangreiche Informationen zu AKR Winkelverbindern sind in der Simpson Strong-Tie® AKR Winkelverbinder-Broschüre und in der ETA-07/0285 aufgeführt. Beides kann von der Website strongtie.de heruntergeladen werden.

#### **SIMPSON** Strong-Tie

#### Winkelverbinder – ANP



ANP Winkelverbinder eignen sich für sich kreuzende Holz/Holz Anschlüsse, Auswechslungen und Schwellen/Stützenanschlüsse.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von

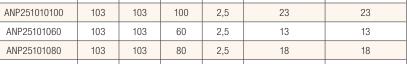
Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.











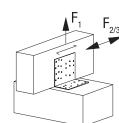



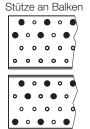


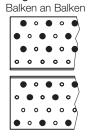

Tabelle 1

| Art. Nr.       | Abmessung [mm] |     |     |     | Anzahl Löcher Ø5 [mm] in Schenkel |    |  |
|----------------|----------------|-----|-----|-----|-----------------------------------|----|--|
|                | A              | В   | С   | t   | А                                 | В  |  |
| ANP254440 1)   | 43             | 43  | 40  | 2,5 | 3                                 | 3  |  |
| ANP254460 1)   | 43             | 43  | 60  | 2,5 | 5                                 | 5  |  |
| ANP254660      | 63             | 43  | 60  | 2,5 | 7                                 | 5  |  |
| ANP2561060     | 103            | 63  | 60  | 2,5 | 12                                | 8  |  |
| ANP2566100     | 63             | 63  | 100 | 2,5 | 14                                | 14 |  |
| ANP256640 1)   | 63             | 63  | 40  | 2,5 | 5                                 | 5  |  |
| ANP256650      | 63             | 63  | 50  | 2,5 | 6                                 | 6  |  |
| ANP256660      | 63             | 63  | 60  | 2,5 | 8                                 | 8  |  |
| ANP256680      | 63             | 63  | 80  | 2,5 | 11                                | 11 |  |
| ANP256860 1)   | 83             | 63  | 60  | 2,5 | 10                                | 8  |  |
| ANP2588100     | 83             | 83  | 100 | 2,5 | 18                                | 18 |  |
| ANP258860      | 83             | 83  | 60  | 2,5 | 10                                | 10 |  |
| ANP258880      | 83             | 83  | 80  | 2,5 | 14                                | 14 |  |
| ANP251010100   | 103            | 103 | 100 | 2,5 | 23                                | 23 |  |
| ANP25101060    | 103            | 103 | 60  | 2,5 | 13                                | 13 |  |
| ANP25101080    | 103            | 103 | 80  | 2,5 | 18                                | 18 |  |
| ANP251020100-B | 203            | 103 | 100 | 2,5 | 45                                | 23 |  |






ANP


1) ohne ETA

#### Anwendungshinweis:

ANP Winkelverbinder dürfen bei sich kreuzenden Hölzern und Schwellen- Stützenanschlüssen in die Lastrichtungen  $\rm F_1$  und  $\rm F_{2/3}$  beansprucht werden, Die entsprechenden Nagelbilder und statischen Werte sind in der ETA-06/0106 in den Tabellen D54-1 und D54-2 aufgeführt.

#### Prinzipielles Nagelbild





Winkelverbinder

#### Winkelverbinder - ANPS

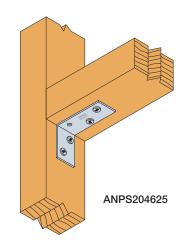


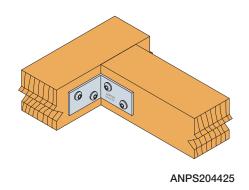
ANPS Winkelverbinder eignen sich für einfache und leichte Holzkonstruktionen ohne statischen Anspruch.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.




#### Produktabmessungen

Tabelle 1

| Art. Nr.   | Abmessung [mm] |    |    |     | Anzahl Löcher Ø5 [mm] in Schenkel |    |  |
|------------|----------------|----|----|-----|-----------------------------------|----|--|
|            | А              | В  | С  | t   | А                                 | В  |  |
| ANPS204425 | 42             | 42 | 25 | 2,0 | 2                                 | 2  |  |
| ANPS204440 | 42             | 42 | 40 | 2,0 | 3                                 | 3  |  |
| ANPS204460 | 42             | 42 | 60 | 2,0 | 5                                 | 5  |  |
| ANPS204625 | 62             | 42 | 25 | 2,0 | 3                                 | 2  |  |
| ANPS206625 | 62             | 62 | 25 | 2,0 | 3                                 | 3  |  |
| ANPS206640 | 62             | 62 | 40 | 2,0 | 5                                 | 5  |  |
| ANPS206650 | 62             | 62 | 50 | 2,0 | 6                                 | 6  |  |
| ANPS206660 | 62             | 62 | 60 | 2,0 | 8                                 | 8  |  |
| ANPS206680 | 62             | 62 | 80 | 2,0 | 11                                | 11 |  |
| ANPS208860 | 82             | 82 | 60 | 2,0 | 10                                | 10 |  |
| ANPS208880 | 82             | 82 | 80 | 2,0 | 14                                | 14 |  |





#### Winkelverbinder - EBC / AB45C

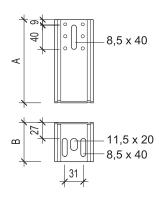


EBC Abstandswinkel eignen sich besonders für eine Abstandsmontage von Holzkonstruktionen an Beton/Mauerwerk. Wegen der großen Anzahl an Längenabstufungen, sind variierende Abstände problemlos überbrückbar.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

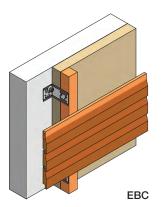
Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von

Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Zur Befestigung auf Beton werden M8 Ankerbolzen verwendet.






#### Produktabmessungen


Tabelle 1

| Todaktabirioodarigori labelle i |                |     |    |     |                                   |         |  |
|---------------------------------|----------------|-----|----|-----|-----------------------------------|---------|--|
| Art. Nr.                        | Abmessung [mm] |     |    |     | Anzahl Löcher Ø5 [mm] in Schenkel |         |  |
|                                 | А              | В   | С  | t   | А                                 | В       |  |
| EBC100/2.5                      | 98             | 53  | 64 | 2,5 | 6                                 | -       |  |
| EBC110/2.5                      | 108            | 53  | 64 | 2,5 | 6                                 | -       |  |
| EBC120/2.5                      | 118            | 53  | 64 | 2,5 | 6                                 | _       |  |
| EBC130/2.5                      | 128            | 53  | 64 | 2,5 | 6                                 | -       |  |
| EBC140/2.5                      | 138            | 53  | 64 | 2,5 | 6                                 | -       |  |
| EBC150/2.5                      | 148            | 53  | 64 | 2,5 | 6                                 | -       |  |
| EBC160/2.5                      | 158            | 53  | 64 | 2,5 | 6                                 | _       |  |
| EBC170/2.5                      | 168            | 53  | 64 | 2,5 | 6                                 | -       |  |
| EBC180/2.5                      | 178            | 53  | 64 | 2,5 | 6                                 | _       |  |
| EBC190/2.5                      | 188            | 53  | 64 | 2,5 | 6                                 | _       |  |
| EBC200/2.5                      | 198            | 53  | 64 | 2,5 | 6                                 | _       |  |
| EBC210/2.5                      | 208            | 53  | 64 | 2,5 | 6                                 | -       |  |
| EBC220/2.5                      | 218            | 53  | 64 | 2,5 | 6                                 | -       |  |
| EBC230/2.5                      | 228            | 53  | 64 | 2,5 | 6                                 | -       |  |
| EBC240/2.5                      | 238            | 53  | 64 | 2,5 | 6                                 | -       |  |
| EBC250/2.5                      | 248            | 53  | 64 | 2,5 | 6                                 | -       |  |
| AB45C                           | 155            | 108 | 70 | 2,5 | 6                                 | 11 x Ø6 |  |



Für AB45C gilt: minimaler Abstand ab Wand bis Vorderkante Winkel = 120 mm maximaler Abstand ab Wand bis Vorderkante Winkel = 180 mm





### Winkelverbinder - TA

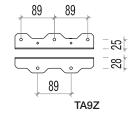




TA Treppenwinkel ermöglichen den schnellen und einfachen Bau einer Holztreppe.

Material: Stahlsorte: Stahlsorte SSGrade33 + G185 gemäß EN10346.

Korrosionsschutz: 600 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 40 µm.

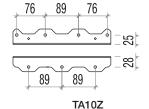

Befestigung: Die TA-Z Treppenwinkel werden mit 6 mm Schlüsselschrauben, Schlossschrauben oder Bolzen mit dem Holz verbunden.

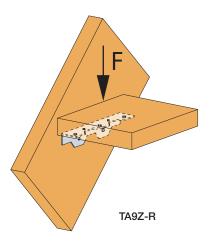


### Produktabmessungen

| Produktabme | essung         |    |     | Tabelle 1 |                    |                  |
|-------------|----------------|----|-----|-----------|--------------------|------------------|
| Art. Nr.    | Abmessung [mm] |    |     |           | Anzahl Löcher Ø7,1 | [mm] in Schenkel |
|             | А              | В  | С   | t         | А                  | В                |
| TA9Z-R      | 41             | 41 | 210 | 2,5       | 3                  | 2                |
| TA10Z-R     | 41             | 41 | 260 | 2,5       | 4                  | 3                |







### Charakteristische Werte der Tragfähigkeit

|         |    |                                       | 0 0                                                                                   |
|---------|----|---------------------------------------|---------------------------------------------------------------------------------------|
| Art. Nı | r. | Holzschraube<br>6,0x 45 mm vorgebohrt | Charakteristische Werte der Tragfähigkeit [kN]<br>1 Winkel – Anschluss Stufe an Wange |
|         |    | Anzahl                                | $R_{i,k}$                                                                             |
| TA9Z-F  | 3  | 5                                     | 6,5                                                                                   |
| TA10Z-  | R  | 7                                     | 8,7                                                                                   |

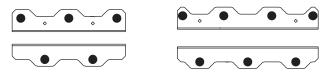
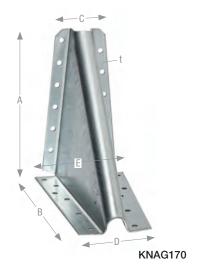



Tabelle 2






### Schenkel A = Stufenauflager



Schenkel B = Wangenanschluss

### Winkelverbinder - KNAG





Knaggen werden zur horizontalen Lastaufnahme und Kippsicherung von Pfetten auf geneigten Bindern und Trägern verwendet. In Kombination mit Sparrenpfettenankern eignen sich die Verbinder sehr gut zur Windsogsicherung.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

**Korrosionsschutz:**  $275 \text{ g/m}^2$  beidseitig – entsprechend einer Zinkschichtdicke von ca.  $20 \mu m$ .

**Befestigung:** Der Anschluss erfolgt mit CNA4,0x $\ell$  Kammnägeln oder CSA5,0x $\ell$  Schrauben.









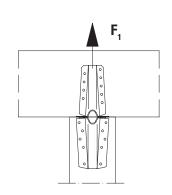


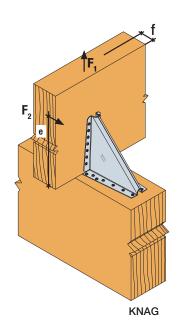
ETA-06/0106

div. Größen

### Produktabmessungen

Tabelle 1


| 1435.15   |     |                |    |    |     |   |    |                       |
|-----------|-----|----------------|----|----|-----|---|----|-----------------------|
| Art. Nr.  |     | Abmessung [mm] |    |    |     |   |    | ner Ø5 [mm]<br>nenkel |
|           | Α   | В              | С  | D  | E   | t | А  | В                     |
| KNAG90-B  | 90  | 90             | 43 | 55 | 69  | 2 | 6  | 8                     |
| KNAG130   | 125 | 125            | 52 | 64 | 79  | 2 | 9  | 10                    |
| KNAG170   | 160 | 160            | 52 | 76 | 93  | 2 | 11 | 12                    |
| KNAG210-B | 200 | 200            | 54 | 86 | 100 | 2 | 14 | 14                    |


### Charakteristische Werte der Tragfähigkeit

### Tabelle 2

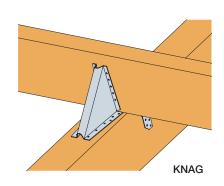
| Art. Nr.  | Verbindungsmittel 1) | Charakteristische Werte der Tragfähigkeit [kN]<br>1 Knagge- Anschluss zwei sich kreuzende Hölzer |          |                               |     |
|-----------|----------------------|--------------------------------------------------------------------------------------------------|----------|-------------------------------|-----|
|           |                      | R <sub>1,k</sub> bei 1                                                                           | f = [mm] | R <sub>2,k</sub> bei e = [mm] |     |
| KNAG90-B  |                      | 3,4                                                                                              | 30       | 1,8                           | 100 |
| KNAG130   | CNA4,0x40            | 4,3                                                                                              | 30       | 3,1                           | 140 |
| KNAG170   | CNA4,0x60            | 5,1                                                                                              | 40       | 4,7                           | 160 |
| KNAG210-B |                      | 6,3                                                                                              | 40       | 5,7                           | 200 |

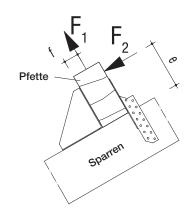
<sup>&</sup>lt;sup>1)</sup> Die Ausnagelung der Knaggen erfolgt im vertikalen Schenkel (Pfette) mit CNA4,0x40 und im horizontalen Schenkel (Sparren) mit CNA4,0x60.





### Winkelverbinder - KNAG


### Charakteristische Werte der Tragfähigkeit


Tabelle 3

| Verbindungsmittel 1) | SPF Anzahl und Typ | Anzahl Nägel je SPF                                             | Charakteristische Werte der Tragfähigkeit [kN]<br>1 KNAG + 1 oder 2 SPF je Anschluss |                                                                                     |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                          |
|----------------------|--------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                    |                                                                 | <b>b</b> <sup>2)</sup>                                                               | e <sup>3)</sup>                                                                     | R <sub>1,k</sub>                                                                                                                                                                                                                                          | $R_{2,k}$                                                                                                                                                                                                                                                                                                                                |
|                      | 1 x SPF250         | 7 + 7                                                           | 80                                                                                   | 100                                                                                 | 10,3                                                                                                                                                                                                                                                      | 12,4                                                                                                                                                                                                                                                                                                                                     |
| CNA4,0x40            | 1 x SPF290         | 9 + 9                                                           | 100                                                                                  | 140                                                                                 | 15,6                                                                                                                                                                                                                                                      | 15,4                                                                                                                                                                                                                                                                                                                                     |
| CNA4,0x60            | 2 x SPF290         | 8 + 8                                                           | 100                                                                                  | 160                                                                                 | 27,1                                                                                                                                                                                                                                                      | 23,4                                                                                                                                                                                                                                                                                                                                     |
|                      | 2 x SPF330         | 9 + 9                                                           | 120                                                                                  | 200                                                                                 | 35,2                                                                                                                                                                                                                                                      | 28,8                                                                                                                                                                                                                                                                                                                                     |
|                      | CNA4,0x40<br>+     | 1 x SPF250<br>CNA4,0x40 1 x SPF290<br>+<br>CNA4,0x60 2 x SPF290 | 1 x SPF250 7 + 7  CNA4,0x40 1 x SPF290 9 + 9  CNA4,0x60 2 x SPF290 8 + 8             | 1 x SPF250 7 + 7 80  CNA4,0x40 1 x SPF290 9 + 9 100  CNA4,0x60 2 x SPF290 8 + 8 100 | 1 KNAG + 1 oder 2           b 2)         e 3)           1 x SPF250         7 + 7         80         100           CNA4,0x40         1 x SPF290         9 + 9         100         140           +         2 x SPF290         8 + 8         100         160 | 1 KNAG + 1 oder 2 SPF je Anschluss           b 2)         e 3)         R <sub>1,k</sub> 1 x SPF250         7 + 7         80         100         10,3           CNA4,0x40         1 x SPF290         9 + 9         100         140         15,6           CNA4,0x60         2 x SPF290         8 + 8         100         160         27,1 |

Die Ausnagelung der Knaggen erfolgt im vertikalen Schenkel (Pfette) mit CNA4,0x40 und horizontalen Schenkel (Sparren) mit CNA4,0x60.
 Breite der Pfette
 Lastangriffshöhe

Es gilt: 
$$\left(\frac{F_{1,d}}{R_{1,d}}\right) + \left(\frac{F_{2,d}}{R_{2,d}}\right) \le 1$$





### Beispiel

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Pfette 100 x 160 mm an Sparren, gewählter Verbinder: 1 Stück KNAG130 mit 1 Stück SPF290 Befestigung mit CNA Nägeln gemäß Tabelle 3.

**Belastung:**  $F_{1,d} = 6,3$  kN;  $F_{2,d} = 4,2$  kN; e = 140 mm; NKL. 2, KLED: kurz  $\Rightarrow k_{mod} = 0,9$ 

$$R_{1,d} = 15.6 \times 0.9 / 1.3 = 10.8$$
  
 $R_{2,d} = 15.4 \times 0.9 / 1.3 = 10.7$ 

Nachweis: 
$$\left(\frac{6,3}{10,8}\right)^2 + \left(\frac{4,2}{10,7}\right)^2 = 0.5 \le 1$$

### Winkelverbinder, Kragarmbeschlag - MAXIMUS™





MAXIMUS™ Verbinder werden zur Herstellung von Kragarmen an Stützen verwendet. Damit lassen sich auf einfache Weise z.B. Holzregale mit akzeptablen Tragfähigkeiten herstellen.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von

Befestigung: Die Kragarme werden mit 16 Stk. CSA5,0xl Schrauben am MAXIMUS™ befestigt. Der Verbinder wird mit dem beiliegenden 20 mm Stabdübel und zwei Sicherungssplinten an der Stütze eingehängt.

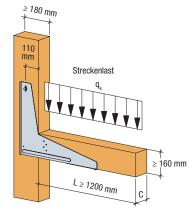


### Produktabmessungen

| Produktabm | essun | gen            |     |     |     |    | Tabelle 1             |
|------------|-------|----------------|-----|-----|-----|----|-----------------------|
| Art. Nr.   |       | Abmessung [mm] |     |     |     |    | ner Ø5 [mm]<br>nenkel |
|            | Α     | В              | С   | D   | t   | В  | С                     |
| MAXIMUS120 | 491   | 623            | 121 | 151 | 2,5 | 12 | 4                     |
| MAXIMUS140 | 491   | 623            | 141 | 171 | 2,5 | 12 | 4                     |
| MAXIMUS160 | 491   | 623            | 161 | 191 | 2,5 | 12 | 4                     |

### Charakteristische Werte der Traafähigkeit

Tabelle 2


| Charakteristische Widerstandslasten $q_{\rm R,k}$ [kN/m] je Verbinder bei einer Kraglänge von L = 1,2 m und für die Lastrichtung |                        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|
| abwärts aufwärts                                                                                                                 |                        |  |  |  |  |
| 7,0 / k <sub>mod</sub>                                                                                                           | 2,6 / k <sub>mod</sub> |  |  |  |  |

### Drehfedersteifigkeit

Tabelle 3

| Drehfedersteifigkeit<br>bei einer nach<br>unten gerichteten Last | Lasteinwirkungsdauer |      |        |      |           |  |
|------------------------------------------------------------------|----------------------|------|--------|------|-----------|--|
|                                                                  | ständig              | lang | mittel | kurz | sehr kurz |  |
| Cφ 1) [kNm]                                                      | 43                   | 43   | 48     | 67   | 85        |  |

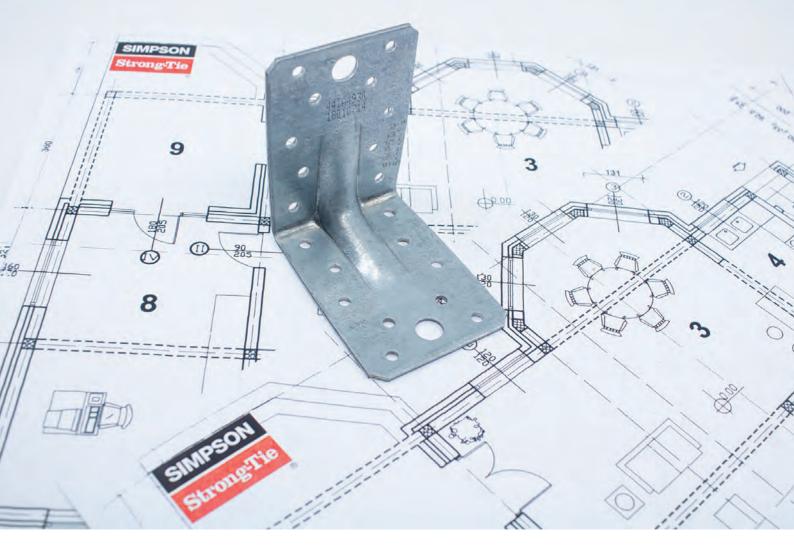
 $<sup>^{1)}</sup>$  C $\phi$  muss auf 60 % der Werte reduziert werden, wenn eine Holzfeuchtigkeit von 18 % für längere Zeit überschritten wird.



MAXIMUS™

Ein Kragarmträger mit L = 0,75 m,  $q_{\nu}$  = 3,0 kN/m²,  $\gamma Q$  = 1,5; NKL 1 mit KLED:  $kurz \Rightarrow k_{mod} = 0.9$ 

Die Durchbiegung ist begrenzt auf 10 mm.


Es werden vereinfacht die Längen und Lasten verglichen.

 $q_{R1,d} = (7,02 / 0,9) \times 0,9 / 1,3 = 5,4 \text{ kN/m}$  $q_{1,d} = 3.0 \times 1.5 = 4.5 \text{ kN/m} < 5.4 \text{ kN/m} \Rightarrow \text{Ok}$ 

### Durchbiegung:

mit  $M_{\nu} = 3.0 \times 0.75^{2} / 2 = 0.84 \text{ kNm}$ 

 $f = M_{\nu} / C\phi \times L = 0.84 / 67 \times 0.75 = 0.0094 \text{ m} = 9.4 \text{ mm} < 10 \text{ mm} \Rightarrow 0 \text{k}$ 



### Planen mit Simpson Strong-Tie®

Wir möchten Sie gezielt bei Ihren Projekten unterstützen und stellen Ihnen neben Kompetenz und Service produktspezifische Ausschreibungstexte für Ihre Bau-Ausschreibung zum kostenlosen Download zur Verfügung.

Als zuverlässiger Partner ist es unser Anspruch, technisch immer auf dem neuesten Stand zu sein und Ihnen die bestmögliche Qualität und Sicherheit zu gewährleisten.

Laden Sie sich die Ausschreibungstexte für die verschiedenen Produktbereiche ganz einfach und ohne Registrierung herunter:

strongtie.de -> Ressourcen -> Ausschreibungstexte











### Balkenschuhe, verdeckte Verbinder

| Allgemeines                           | 81-83   |
|---------------------------------------|---------|
| Übersicht                             |         |
| Abstände der Bolzenlöcher             | 86-87   |
| BSNN                                  | 88-91   |
| BSIN                                  | 92-93   |
| SDE                                   | 94      |
| BSIL                                  | 95      |
| SBG                                   | 96-97   |
| BSS                                   | 98-99   |
| BSD / BSDI                            | 100-102 |
| GLE / GLI                             | 104-105 |
| GSE / GSI                             | 106-109 |
| GBE / GBI                             |         |
| EWP Formteile - LSSU                  | 112-113 |
| EWP Formteile – IUSE                  | 114     |
| Balkenträger – BTN / BT4 / BT / BTALU | 116-125 |
| Balkenträger – BTC                    | 126-128 |
| T-Profile Alu – TALU3000              | 129     |
| Balkenträger – TU / TUS               | 130-131 |
| Hirnholzverbinder – ETB               | 132-133 |
| Hirnholzverbinder – EL / ELS          | 134-135 |
| Hirnholzverbinder – ATFN              |         |
| Elementverbinder – ICST               | 138-139 |
|                                       |         |



Balkenschuhe, verdeckte Verbinder

### Balkenschuhe - verdeckte Verbinder – Allgemeines

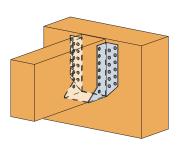


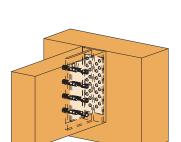
### Übersicht über die verschiedenen Querkraftanschlüsse

### Balkenschuhe

- Stahlblechholzverbinder
- Vormontage Hauptträger
- Einfaches Einlegen des Nebenträgers
- 2- bzw. 3-achsig belastbar
- Anschlüsse auch an Beton oder Stahl
- F30-B bedingt möglich

### **EWP Verbinder**


- Verbindungen für Schräganschlüsse
- Verbindungen von Stegträgern


### Balkenträger

- Verdeckte Anschlüsse
- Mit oder ohne Schattenfuge
- Schräg und geneigt möglich
- Auch an Beton oder Stahl
- Bis zu 3-achsig belastbar
- Bis F60-B ausführbar

### Hirnholzverbinder

- Verdeckte Anschlüsse
- Mit oder ohne Schattenfuge
- Einfacher Abbund
- Weitgehende werkseitige Vormontage
- Bauseits nur Einhängen der Nebenträger
- EL Verbinder auch an Beton oder Stahl
- ETB Passverbinder
- F30-B bedingt möglich
- ATF 3-achsig belastbar





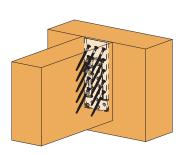



Tabelle 1

| BSNN / BSIN |                  |
|-------------|------------------|
| SDE         |                  |
| BSIL        |                  |
| SBG         |                  |
| BSS         | ETA<br>06 / 0270 |
| BSD / BSDI  |                  |
| GLE / GLI   |                  |
| GSE / GSI   |                  |
| GBE / GBI   |                  |

Tabelle 2

| BTN      |           |
|----------|-----------|
| BT4      |           |
| BT       | ETA       |
| BTALU    | 07 / 0245 |
| BTC      |           |
| TU / TUS |           |

### Tabelle 3

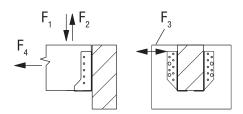
| ETB      |           |
|----------|-----------|
| EL / ELS | ETA       |
| ATF      | 07 / 0245 |
| ICST     |           |

### Balkenschuhe - Allgemeines



### Anwendung

Anschlüsse von Nebenträgern aus Holz oder Holzwerkstoffen an Hauptträgern/Stützen aus Holz, Beton oder Stahl. Die Dimensionen sind in den folgenden Tabellen aufgeführt.


### Material

- S250GD + Z275
- Blechdicke 1,5 mm bis 4,0 mm

### Verbindungsmittel

- CNA 4,0xl Kammnägel
- CSA 5,0xl Schrauben
- Ankerbolzen Ø8 bis Ø16 mm
- Stabdübel Ø8 bis Ø16 mm

### Definition der Kraftrichtungen



In den Tabellenwerten der Tragfähigkeit ist die Lage der Kraft  $\rm F_2$  an der Oberkante (OK) des Balkenschuhes angenommen. Liegt die Wirkungslinie der Kraft  $\rm F_{3,k}$  weiter von der OK des Balkenschuhe entfernt, sind die Nachweise gemäß den Zulassungen zu führen. Wirkt die Kraft in einem geringeren Abstand, kann vereinfacht mit den angegebenen Werten gerechnet werden, oder die höheren Werte werden gemäß den Angaben der Zulassungen ermittelt. Querzugnachweise sind ggf. für Haupt- und Nebenträger gesondert zu führen.

Es gilt : 
$$R_{i,d} = \frac{R_{i,k} \times k_{mod}}{\gamma_{M}}$$

Die charakteristischen Tragfähigkeiten der Balkenschuhe sind gemäß Angaben der ETA ermittelt.

Ist  $H_N > 1.5 \times B$  (B = Höhe Balkenschuh) ist ein Kippnachweis zu führen.

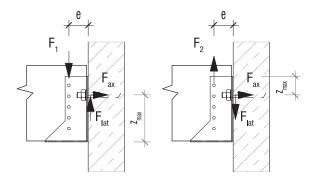
### Zwei- und dreiachsige Beanspruchungen

Bei gleichzeitiger Beanspruchung des Balkenschuhs in Richtung seiner Symmetrieachse, rechtwinklig dazu und in die Achsrichtung des Nebenträgers, ist nachzuweisen:

$$\left|\frac{F_{_{1/2,d}}}{R_{_{1/2,d}}}\right|^2 + \left|\frac{F_{_{3,d}}}{R_{_{3,d}}}\right|^2 + \left|\frac{F_{_{4,d}}}{R_{_{4,d}}}\right|^2 \leq 1$$

Der Hauptträger ist gegen Verdrehen zu sichern. Für das Versatzmoment im Hauptträger gilt:  $M_{v,d} = F_{1,d} \times (B_H / 2 + 30 \text{ mm})$ 

Ein Versatzmoment ist auch zu berücksichtigen, sofern bei zweiseitigen Anschlüssen die gegenüberliegenden Lasten einen Unterschied von mehr als 20% aufweisen. Für die Nägel in den Hauptträgern sind die Randabstände gemäß EC 5 einzuhalten.


### Anschlüsse an Beton oder Stahl

Die Befestigung der Balkenschuhe an Beton, Mauerwerk, an darin eingebaute Ankerschienen oder Stahltragwerke erfolgt mit geeigneten Ankern und U-Scheiben.

Bei Anschlüssen an Mauerwerk ist eine Stahlplatte zwischen Balkenschuh und Mauerwerk einzubauen.

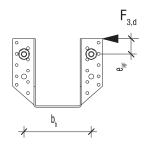
### Balkenschuhanschlüsse mit Ankerbolzen an Beton oder Stahl

Belastung in Symmetrieachse des Balkenschuhs:



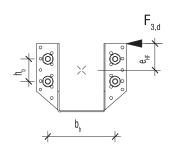
### Balkenschuhe - Allgemeines




### Die Belastung der Ankerbolzen aus den Kraftrichtungen $F_1$ oder $F_2$ errechnet sich

$$F_{bolt,lat,d} = \frac{F_{1/2,d}}{n_{af}}$$

$$\mathsf{F}_{\mathsf{bolt},\mathsf{ax},\mathsf{d}} = \frac{\mathsf{F}_{\mathsf{1/2},\mathsf{d}} \, \mathsf{x} \, \mathsf{e}}{2 \, \mathsf{x} \, \mathsf{z}_{\mathsf{max}}}$$


Die Belastung der Ankerbolzen aus der Kraftrichtung  $F_3$  errechnet sich bei der Verwendung mit 2 Ankerbolzen:

$$F_{bolt,lat,d} = \sqrt{\left(\frac{F_{3,d}}{2}\right)^2 + \left(\frac{F_{3,d} \times e_{H,F}}{b_b}\right)^2}$$



### Bei der Verwendung mit 4 Ankerbolzen

$$F_{\text{bolt,lat,d}} = \frac{\left(F_{\text{3,d}} - 0.5 \times n_{\text{N}} \times R_{\text{ax,N,d}}\right) \times \left(e_{\text{H,F}} + 0.5 \times h_{\text{b}}\right)}{h_{\text{b}}}$$



### Verwendete Zeichen

n<sub>H</sub> = Anzahl der Nägel im Hauptträger

n<sub>N</sub> = Anzahl der Nägel im Nebenträger

 ${\sf R}_{\ldots, \sf k} = {\sf charakteristischer}$  Wert der Tragfähigkeit der Nägel mit Fußzeiger:

lat auf Abscheren

auf Herausziehen

m Hauptträger

, im Nebenträger

A = Breite des Balkenschuhs

B = Höhe des Balkenschuhs

HT = Hauptträger

NT = Nebenträger

H<sub>H</sub> = Höhe des Hauptträgers

H<sub>N</sub> = Höhe des Nebenträgers

B<sub>H</sub> = Breite des Hauptträgers

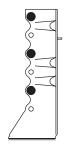
e = Abstand der Nägel im Nebenträger zur Anschlussfläche des Hauptträgers

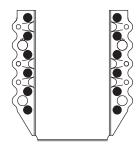
n<sub>ef,b</sub> = effektive Anzahl der Bolzen bei SBG und BSNN Balkenschuhen:

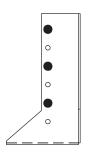
bei 2 Bolzen = 2

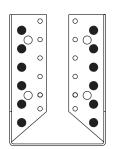
bei 4 Bolzen = 3,2

bei allen anderen Balkenschuhen  $n_b = n_{ef,b}$ 


F<sub>bolt.lat.d</sub> = maximale Belastung des maßgeblichen Einzelankerbolzens


 ${\rm e_{HF}}~=~{\rm Abstand~der~Wirkungslinie~der~Kraft~F_3}$ von der Zentrumslinie der Bolzen.


Die Nachweise für die Ankerbolzen im Verankerungsgrund sind gesondert zu führen.


 R<sub>bolt,lat,d</sub> = Bemessungswert der Tragfähigkeit eines Ankerbolzens, jedoch maximal 8,5 kN bei Blechdicke 2,0 mm und M10 bei SBG und BSNN Balkenschuhen für M10: maximal 9,2 kN bei Belastung rechtwinklig zur Symmetrieachse und max. 5,46 kN bei Belastung in Symmetrieachse des Balkenschuhs.

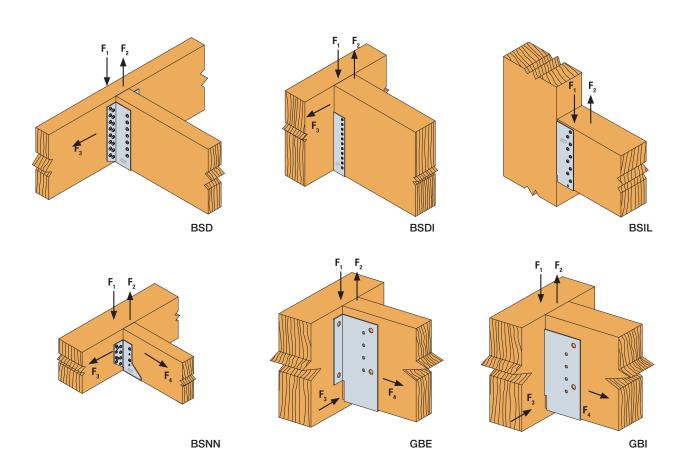
### Teilausnagelung





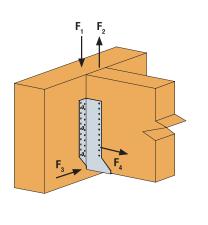




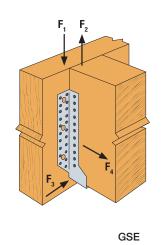

# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

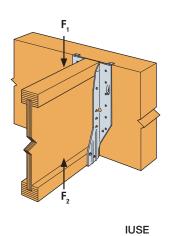
### Balkenschuhe – Übersicht

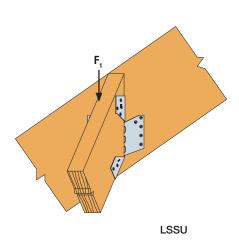
### SIMPSON Strong-Tie


| Art. Gruppe | Seite   | CE | Ab   | messur | ngen [m | m]   | Abstufung 1) | Geeignet für        |                |            |                     |          |                                    |
|-------------|---------|----|------|--------|---------|------|--------------|---------------------|----------------|------------|---------------------|----------|------------------------------------|
|             |         |    | Brei | te A   | Höh     | ne B |              |                     |                |            |                     |          |                                    |
|             |         |    | von  | bis    | von     | bis  |              | Standard-<br>Träger | hohe<br>Träger | Stegträger | Beton-<br>anschluss | F30      | schräge/<br>geneigte<br>Anschlüsse |
| BSD         | 100-102 | 1  | 34   | 250    | 100     | 320  | 2            | ✓                   | <b>√</b>       | ✓          | ✓                   |          |                                    |
| BSDI        | 100-102 | 1  | 34   | 250    | 100     | 320  | 2            | ✓                   | <b>√</b>       | <b>✓</b>   |                     |          |                                    |
| BSIL        | 95      | /  | 90   | 120    | 180     | 230  | 1            | <b>√</b>            |                |            |                     |          |                                    |
| SDE         | 94      | 1  | 60   | 250    | 118     | 188  | 1            | <b>√</b>            |                |            | ✓                   |          |                                    |
| BSNN        | 88-91   | /  | 40   | 140    | 90      | 226  | 1            | ✓                   |                |            | ✓                   |          |                                    |
| BSIN        | 92-93   | 1  | 40   | 140    | 78      | 210  | 1            | <b>✓</b>            |                |            |                     |          |                                    |
| BSS         | 98-99   | 1  | 80   | 160    | 130     | 230  | 1            | <b>√</b>            |                |            |                     |          |                                    |
| GBE         | 110-111 | 1  | 100  | 225    | 190     | 700  | 1            |                     | <b>√</b>       |            | ✓                   |          |                                    |
| GBI         | 110-111 | 1  | 120  | 225    | 190     | 690  | 1            |                     | ✓              |            | ✓                   |          |                                    |
| GLE-2,5     | 104-105 | 1  | 60   | 240    | 160     | 480  | 1            | ✓                   | <b>√</b>       |            | ✓                   |          |                                    |
| GLI-2,5     | 104-105 | 1  | 76   | 240    | 160     | 472  | 1            | ✓                   | ✓              |            |                     |          |                                    |
| GSE-4,0     | 106-109 | 1  | 32   | 200    | 122     | 494  | 1            | ✓                   | ✓              |            | <b>√</b>            | <b>√</b> |                                    |
| GSI-4,0     | 106-109 | 1  | 84   | 200    | 122     | 468  | 1            | ✓                   | <b>√</b>       |            |                     | <b>√</b> |                                    |
| IUSE        | 114     | 1  | 48   | 92     | 199     | 399  | 1            |                     |                | ✓          |                     |          |                                    |
| LSSU        | 112-113 | 1  | 46   | 90     | 216     | 216  | 1            |                     |                | ✓          |                     |          | 1                                  |
| SBG         | 96-97   | 1  | 40   | 140    | 110     | 220  | 1            | ✓                   |                |            | ✓                   |          |                                    |

<sup>1) 1 =</sup> feste Größeneinteilung 2 = variable Größeneinteilung





### Balkenschuhe – Übersicht






GLE







### Abstände der Bolzenlöcher

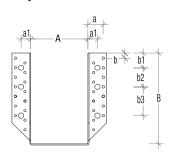


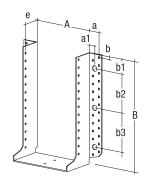
In den folgenden beiden Tabellen sind zur Bemessung der Bolzen und für die Randabstände der Nägel die wichtigsten Bohrungsabstände aufgeführt.

Die Größe der Grundform eines Balkenschuhs ist die Summe aus 1 x Breite "A" + 2 x Höhe "B" des Balkenschuhs. Z.B. ergibt ein Balkenschuh BSNN80x150 die Grundform 380.

80 + (2 x 150) = 380 mm. Das oberste Bolzenloch ist nach Tabelle 1 Spalte "b1" 38 mm von der Oberkante entfernt. Der Abstand zur nächsten Bohrung beträgt gem. Spalte "b2" 60 mm.

### Abstände der Bolzenlöcher


Tabelle 1


| Тур                          | Grundform   |      |    | At  | ostände der Bo | olzenlöcher/ N | lagellöcher [m | nm] |    |    |
|------------------------------|-------------|------|----|-----|----------------|----------------|----------------|-----|----|----|
|                              |             | a    | a1 | b   | b1             | b2             | b3             | b4  | Ø  | е  |
| BSD                          | Alle        |      |    |     | Siehe Zeichnu  | ngen beim BS   | D Balkenschuh  |     |    |    |
|                              | 230         | 22,0 | 16 | 8   | 23             | _              | -              | ı   | 11 | 31 |
|                              | 260         | 22,0 | 16 | 8   | 38             | _              | _              | ı   | 11 | 31 |
| BSNN                         | 320         | 22,0 | 16 | 8   | 38             | _              | _              | 1   | 11 | 31 |
| DOININ                       | 380         | 22,0 | 16 | 8   | 38             | 60             | _              | 1   | 11 | 31 |
|                              | 440         | 22,0 | 16 | 8   | 38             | 60             | _              | -   | 11 | 31 |
|                              | 500         | 22,0 | 16 | 8   | 38             | 80             | _              | -   | 11 | 31 |
| BSNN100/100                  | Sondergröße | 22,0 | 16 | 8   | 28             | _              | _              | -   | 11 | 31 |
| BSNN120/110                  | Sondergröße | 22,0 | 16 | 8   | 38             | _              | _              | -   | 11 | 31 |
| BSNN140/120                  | Sondergröße | 22,0 | 16 | 8   | 58             | _              | _              | _   | 11 | 31 |
|                              | 300/30      | 33   | 22 | 5   | 20             | 50             | -              | _   | 13 | 38 |
| SDE                          | 340/30      | 33   | 22 | 5   | 20             | 70             | -              | _   | 13 | 38 |
| SDE                          | 380/30      | 33   | 22 | 5   | 20             | 70             | _              | ı   | 13 | 38 |
|                              | 440/30      | 33   | 22 | 5   | 20             | 100            | -              | -   | 13 | 38 |
|                              | 260         | 19,5 | 16 | 8   | 38             | -              | -              | -   | 11 | 31 |
|                              | 320         | 19,5 | 16 | 8   | 38             | -              | -              | -   | 11 | 31 |
| SBG                          | 380         | 19,5 | 16 | 8   | 38             | 60             | -              | -   | 11 | 31 |
|                              | 440         | 19,5 | 16 | 8   | 38             | 60             | -              | -   | 11 | 31 |
|                              | 500         | 19,5 | 16 | 8   | 38             | 80             | -              | -   | 11 | 31 |
| GLE/2,5X<br>144 < A < 161    | 500         | 31,0 | 18 | 7,5 | 27,5           | 100            | -              | _   | 14 | 48 |
|                              | 540         | 31,0 | 18 | 7,5 | 27,5           | 120            | -              | _   | 14 | 48 |
|                              | 600         | 31,0 | 18 | 7,5 | 37,5           | 140            | -              | -   | 14 | 48 |
|                              | 660         | 31,0 | 18 | 7,5 | 27,5           | 80             | 100            | -   | 14 | 48 |
|                              | 720         | 31,0 | 18 | 7,5 | 37,5           | 100            | 100            | _   | 14 | 48 |
| GLE/2,5X<br>31 < A < 161     | 780         | 31,0 | 18 | 7,5 | 27,5           | 120            | 120            | _   | 14 | 48 |
| 31 \77 \ 101                 | 840         | 31,0 | 18 | 7,5 | 37,5           | 120            | 140            | -   | 14 | 48 |
|                              | 900         | 31,0 | 18 | 7,5 | 27,5           | 140            | 160            | -   | 14 | 48 |
|                              | 960         | 31,0 | 18 | 7,5 | 37,5           | 100            | 100            | 120 | 14 | 48 |
|                              | 1020        | 31,0 | 18 | 7,5 | 27,5           | 120            | 120            | 120 | 14 | 48 |
| GLE/2,5X-AL<br>160 < A < 201 | 500         | 31,0 | 18 | 7,5 | 27,5           | 80             | -              | -   | 14 | 48 |
|                              | 540         | 31,0 | 18 | 7,5 | 27,5           | 80             | -              | -   | 14 | 48 |
|                              | 600         | 31,0 | 18 | 7,5 | 37,5           | 100            | -              | -   | 14 | 48 |
|                              | 660         | 31,0 | 18 | 7,5 | 27,5           | 60             | 80             | -   | 14 | 48 |
|                              | 720         | 31,0 | 18 | 7,5 | 37,5           | 80             | 80             | -   | 14 | 48 |
| GLE/2,5X-AL<br>160 < A < 241 | 780         | 31,0 | 18 | 7,5 | 27,5           | 100            | 100            | _   | 14 | 48 |
| 100 < 11 < 241               | 840         | 31,0 | 18 | 7,5 | 37,5           | 100            | 120            | _   | 14 | 48 |
|                              | 900         | 31,0 | 18 | 7,5 | 27,5           | 120            | 140            | _   | 14 | 48 |
|                              | 960         | 31,0 | 18 | 7,5 | 37,5           | 140            | 140            | _   | 14 | 48 |
|                              | 1020        | 31,0 | 18 | 7,5 | 27,5           | 100            | 100            | 120 | 14 | 48 |

### Abstände der Bolzenlöcher



### Systemskizzen Balkenschuh





### Abstände der Bolzenlöcher

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Tabelle 2

| Тур           | Grundform |    |    | Ab | Abstände der Bolzenlöcher/ Nagellöcher [mm] |     |     |       |    |     |  |
|---------------|-----------|----|----|----|---------------------------------------------|-----|-----|-------|----|-----|--|
|               |           | a  | a1 | b  | b1                                          | b2  | b3  | b4    | Ø  | е   |  |
|               | 380       | 36 | 26 | 10 | 20                                          | 50  | -   | -     | 13 | 62  |  |
|               | 440       | 36 | 26 | 10 | 20                                          | 80  | _   | _     | 13 | 62  |  |
|               | 500       | 36 | 26 | 10 | 30                                          | 100 | _   | _     | 13 | 62  |  |
|               | 540       | 36 | 26 | 10 | 30                                          | 120 | -   | _     | 13 | 62  |  |
|               | 600       | 36 | 26 | 10 | 20                                          | 160 | -   | _     | 13 | 62  |  |
| GSE/4X        | 660       | 36 | 26 | 10 | 30                                          | 80  | 100 | _     | 13 | 62  |  |
| 31 < A < 137  | 720       | 36 | 26 | 10 | 20                                          | 100 | 120 | _     | 13 | 62  |  |
|               | 780       | 36 | 26 | 10 | 20                                          | 130 | 120 | -     | 13 | 62  |  |
|               | 840       | 36 | 26 | 10 | 20                                          | 140 | 140 | -     | 13 | 62  |  |
|               | 900       | 36 | 26 | 10 | 30                                          | 160 | 140 | _     | 13 | 62  |  |
|               | 960       | 36 | 26 | 10 | 20                                          | 180 | 160 | _     | 13 | 62  |  |
|               | 1020      | 36 | 26 | 10 | 30                                          | 200 | 160 | _     | 13 | 62  |  |
|               | 500       | 36 | 26 | 10 | 50                                          | _   | _   | _     | 13 | 62  |  |
|               | 540       | 36 | 26 | 10 | 30                                          | 80  | _   | _     | 13 | 62  |  |
|               | 600       | 36 | 26 | 10 | 20                                          | 120 | _   | _     | 13 | 62  |  |
|               | 660       | 36 | 26 | 10 | 30                                          | 120 | _   | _     | 13 | 62  |  |
| GSE/4X-AL     | 720       | 36 | 26 | 10 | 20                                          | 100 | 90  | _     | 13 | 62  |  |
| 136 < A < 201 | 780       | 36 | 26 | 10 | 20                                          | 110 | 110 | _     | 13 | 62  |  |
|               | 840       | 36 | 26 | 10 | 20                                          | 120 | 120 | _     | 13 | 62  |  |
|               | 900       | 36 | 26 | 10 | 30                                          | 130 | 130 | _     | 13 | 62  |  |
|               | 960       | 36 | 26 | 10 | 20                                          | 140 | 140 | _     | 13 | 62  |  |
|               | 1020      | 36 | 26 | 10 | 30                                          | 150 | 150 | _     | 13 | 62  |  |
|               | 600       |    | 26 | -  | 28                                          | 123 | _   | _     | 18 | 127 |  |
|               | 750       |    | 26 | -  | 28                                          | 198 | _   | _     | 18 | 127 |  |
|               | 900       | -  | 26 | -  | 28                                          | 137 | 137 | _     | 18 | 127 |  |
| GBE / GBI     | 1050      | _  | 26 |    | 28                                          | 174 | 174 | _     | 18 | 127 |  |
|               | 1200      | _  | 26 |    | 28                                          | 141 | 141 | 141   | 18 | 127 |  |
|               | 1350      | -  | 26 | -  | 28                                          | 166 | 166 | 166   | 18 | 127 |  |
|               | 1500      | _  | 26 | -  | 28                                          | 143 | + 3 | x 143 | 18 | 127 |  |

### Balkenschuhe - BSNN





BSNN Balkenschuhe werden zur Verbindung von Nebenträgern mit Hauptträgern oder Stützen verwendet und dürfen in alle Richtungen belastet

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

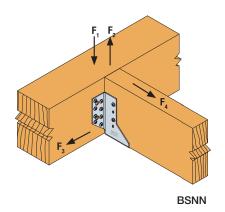
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Zur Befestigung der Balkenschuhe an Beton, Stahl oder Mauerwerk sind werkseitig Löcher Ø11 mm vorhanden.

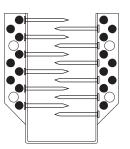








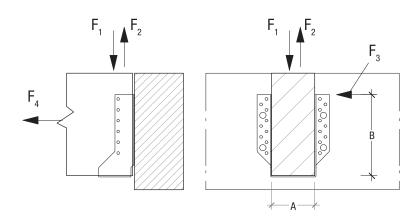

### Produktabmessungen


Tabelle 1

| TOGGREADITIESSE | angen |     |            |    |     |          |            |               |          | rabelle i            |
|-----------------|-------|-----|------------|----|-----|----------|------------|---------------|----------|----------------------|
| Art. Nr.        |       | Al  | messung [m | m] |     |          | Löch       | er und Anzahl | Nägel    |                      |
|                 |       |     |            |    |     |          | <b>Ø</b> 5 | mm            |          | Ø11 mm <sup>1)</sup> |
|                 |       |     |            |    |     | Teilausn | agelung    | Vollausr      | nagelung |                      |
|                 | Α     | В   | D          | F  | t   | HT       | NT         | HT            | NT       | HT                   |
| BSNN40/95       | 40    | 95  | 27         | 63 | 2,0 | 6        | 3          | 8             | 6        | 2                    |
| BSNN40/110      | 40    | 110 | 27         | 63 | 2,0 | 8        | 4          | 12            | 6        | 2                    |
| BSNN40/140      | 40    | 140 | 27         | 63 | 2,0 | 10       | 6          | 16            | 10       | 2                    |
| BSNN45/108      | 45    | 108 | 27         | 63 | 2,0 | 8        | 4          | 12            | 6        | 2                    |
| BSNN45/138      | 45    | 138 | 27         | 63 | 2,0 | 10       | 6          | 16            | 10       | 2                    |
| BSNN45/168      | 45    | 168 | 27         | 63 | 2,0 | 12       | 6          | 18            | 12       | 4                    |
| BSNN45/198      | 45    | 198 | 27         | 63 | 2,0 | 14       | 8          | 22            | 14       | 4                    |
| BSNN48/226      | 48    | 226 | 27         | 63 | 2,0 | 16       | 8          | 26            | 16       | 4                    |
| BSNN51/90       | 51    | 90  | 27         | 63 | 2,0 | 6        | 3          | 8             | 6        | 2                    |
| BSNN51/105      | 51    | 105 | 27         | 63 | 2,0 | 8        | 4          | 12            | 6        | 2                    |
| BSNN51/135      | 51    | 135 | 27         | 63 | 2,0 | 10       | 6          | 16            | 10       | 2                    |
| BSNN51/164      | 51    | 165 | 27         | 63 | 2,0 | 12       | 6          | 18            | 12       | 4                    |
| BSNN51/195      | 51    | 195 | 27         | 63 | 2,0 | 14       | 8          | 22            | 14       | 4                    |
|                 |       |     |            |    |     |          |            |               |          |                      |

<sup>&</sup>lt;sup>1)</sup> Die Lage und Abstände der Bolzenlöcher können der Tabelle zu Beginn dieses Kapitels entnommen werden.








Die versetzte Anordnung der Nägel im Nebenträger vermeidet das Spalten der Hölzer bei schmalen Abmessungen.

### Balkenschuhe - BSNN





### Charakteristische Werte der Tragfähigkeit

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Tabelle 2

|            | Table Victor act Tragianing Note |                  |                                                |                  |                  |                  |                     |                  |                  |  |  |  |
|------------|----------------------------------|------------------|------------------------------------------------|------------------|------------------|------------------|---------------------|------------------|------------------|--|--|--|
| Art. Nr.   | CNA Nagel                        |                  | Charakteristische Werte der Tragfähigkeit [kN] |                  |                  |                  |                     |                  |                  |  |  |  |
|            |                                  |                  | Teilausr                                       | nagelung         |                  |                  | Vollaus             | nagelung         |                  |  |  |  |
|            | 4,0x                             | R <sub>1,k</sub> | R <sub>2,k</sub> 1)                            | R <sub>3,k</sub> | R <sub>4,k</sub> | R <sub>1,k</sub> | R <sub>2,k</sub> 1) | R <sub>3,k</sub> | R <sub>4,k</sub> |  |  |  |
| BSNN40/95  | 40                               | 7,7              | 4,3                                            | 1,4              | 3,1              | 8,9              | 4,3                 | 3,9              | 4,4              |  |  |  |
| BSNN40/110 | 40                               | 9,9              | 5,1                                            | 2,2              | 5,9              | 13,8             | 5,1                 | 5,5              | 5,9              |  |  |  |
| BSNN40/140 | 40                               | 13,5             | 5,9                                            | 2,7              | 7,4              | 20,3             | 5,9                 | 7,7              | 7,4              |  |  |  |
| BSNN45/108 | 40                               | 9,7              | 5,7                                            | 2,2              | 5,9              | 13,4             | 5,7                 | 5,5              | 5,9              |  |  |  |
| BSNN45/138 | 40                               | 13,3             | 6,6                                            | 2,7              | 7,4              | 19,9             | 6,6                 | 7,7              | 7,4              |  |  |  |
| BSNN45/168 | 40                               | 14,6             | 7,4                                            | 3,2              | 8,9              | 25,4             | 7,4                 | 9,0              | 8,9              |  |  |  |
| BSNN45/198 | 40                               | 18,3             | 8,2                                            | 3,6              | 10,4             | 29,3             | 8,2                 | 10,6             | 10,4             |  |  |  |
| BSNN48/226 | 40                               | 18,3             | 9,4                                            | 4,1              | 11,8             | 32,9             | 9,4                 | 12,1             | 11,8             |  |  |  |
| BSNN51/90  | 50                               | 9,2              | 5,2                                            | 1,7              | 3,8              | 10,5             | 5,2                 | 5,0              | 5,9              |  |  |  |
| BSNN51/105 | 50                               | 12,0             | 6,3                                            | 2,7              | 7,5              | 16,6             | 6,3                 | 6,9              | 7,8              |  |  |  |
| BSNN51/135 | 50                               | 16,5             | 7,4                                            | 3,3              | 9,8              | 24,7             | 7,4                 | 9,7              | 9,8              |  |  |  |
| BSNN51/164 | 50                               | 17,8             | 8,3                                            | 3,8              | 11,3             | 31,1             | 8,3                 | 11,4             | 11,8             |  |  |  |
| BSNN51/195 | 50                               | 22,2             | 9,2                                            | 4,4              | 13,7             | 35,5             | 9,2                 | 13,5             | 13,7             |  |  |  |

<sup>&</sup>lt;sup>1)</sup> Für R<sub>2,k</sub> ist der Querzug des NT mit HN = B x 4/3 berücksichtigt. Mit Querzugverstärkungen können höhere Werte gemäß ETA-06/0270 ermittelt werden.

### Teilausnagelung Vollausnagelung

### SIMPSON **Strong-Tie**

### Produktabmessungen

Tabelle 3

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

| Art. Nr.    |     | Ab  | messung [m | m] |     |          | Löch    | er und Anzahl | Nägel    |                      |
|-------------|-----|-----|------------|----|-----|----------|---------|---------------|----------|----------------------|
|             |     |     |            |    |     |          | Ø5      | mm            |          | Ø11 mm <sup>1)</sup> |
|             |     |     |            |    |     | Teilausr | agelung | Vollausr      | nagelung |                      |
|             | Α   | В   | D          | F  | t   | HT       | NT      | HT            | NT       | HT                   |
| BSNN60/100  | 60  | 100 | 27         | 63 | 2,0 | 8        | 4       | 12            | 6        | 2                    |
| BSNN60/130  | 60  | 130 | 27         | 63 | 2,0 | 10       | 6       | 16            | 10       | 2                    |
| BSNN60/160  | 60  | 160 | 27         | 63 | 2,0 | 12       | 6       | 18            | 12       | 4                    |
| BSNN60/190  | 60  | 190 | 27         | 63 | 2,0 | 14       | 8       | 22            | 14       | 4                    |
| BSNN60/220  | 60  | 220 | 27         | 63 | 2,0 | 16       | 8       | 26            | 16       | 4                    |
| BSNN70/125  | 70  | 125 | 27         | 63 | 2,0 | 10       | 6       | 16            | 10       | 2                    |
| BSNN70/155  | 70  | 155 | 27         | 63 | 2,0 | 12       | 6       | 18            | 12       | 4                    |
| BSNN73/184  | 73  | 184 | 27         | 63 | 2,0 | 14       | 8       | 22            | 14       | 4                    |
| BSNN80/120  | 80  | 120 | 27         | 63 | 2,0 | 10       | 6       | 16            | 10       | 2                    |
| BSNN80/150  | 80  | 150 | 27         | 63 | 2,0 | 12       | 6       | 18            | 12       | 4                    |
| BSNN80/180  | 80  | 180 | 27         | 63 | 2,0 | 14       | 8       | 22            | 14       | 4                    |
| BSNN80/210  | 80  | 210 | 27         | 63 | 2,0 | 16       | 8       | 26            | 16       | 4                    |
| BSNN90/145  | 90  | 145 | 27         | 63 | 2,0 | 12       | 6       | 18            | 12       | 4                    |
| BSNN100/100 | 100 | 100 | 27         | 63 | 2,0 | 8        | 4       | 14            | 8        | 2                    |
| BSNN100/140 | 100 | 140 | 27         | 63 | 2,0 | 12       | 6       | 18            | 12       | 4                    |
| BSNN100/170 | 100 | 170 | 27         | 63 | 2,0 | 14       | 8       | 22            | 14       | 4                    |
| BSNN100/200 | 100 | 200 | 27         | 63 | 2,0 | 16       | 8       | 26            | 16       | 4                    |
| BSNN120/110 | 120 | 110 | 27         | 63 | 2,0 | 8        | 4       | 12            | 8        | 2                    |
| BSNN120/160 | 120 | 160 | 27         | 63 | 2,0 | 14       | 8       | 22            | 14       | 4                    |
| BSNN120/190 | 120 | 190 | 27         | 63 | 2,0 | 16       | 8       | 26            | 16       | 4                    |
| BSNN140/120 | 140 | 120 | 27         | 63 | 2,0 | 10       | 6       | 16            | 10       | 4                    |
| BSNN140/150 | 140 | 150 | 27         | 63 | 2,0 | 14       | 8       | 22            | 14       | 4                    |
| BSNN140/180 | 140 | 180 | 27         | 63 | 2,0 | 16       | 8       | 26            | 16       | 4                    |

<sup>&</sup>lt;sup>1)</sup> Die Lage und Abstände der Bolzenlöcher können der Tabelle zu Beginn dieses Kapitels entnommen werden.

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

### Balkenschuhe - BSNN

### Charakteristische Werte der Tragfähigkeit

Tabelle 4

Strong-Tie

| Art. Nr.    | CNA Nagel | Charakteristische Werte der Tragfähigkeit [kN] |                     |                  |                  |                  |                     |                  |                  |  |
|-------------|-----------|------------------------------------------------|---------------------|------------------|------------------|------------------|---------------------|------------------|------------------|--|
|             |           |                                                | Teilausr            | nagelung         |                  |                  | Vollausr            | nagelung         |                  |  |
|             | 4,0x      | R <sub>1,k</sub>                               | R <sub>2,k</sub> 1) | R <sub>3,k</sub> | R <sub>4,k</sub> | R <sub>1,k</sub> | R <sub>2,k</sub> 1) | R <sub>3,k</sub> | R <sub>4,k</sub> |  |
| BSNN60/100  | 50        | 11,4                                           | 7,2                 | 2,7              | 7,5              | 15,6             | 7,2                 | 6,9              | 7,8              |  |
| BSNN60/130  | 50        | 16,0                                           | 8,5                 | 3,3              | 9,8              | 23,8             | 8,5                 | 9,7              | 9,8              |  |
| BSNN60/160  | 50        | 17,8                                           | 9,7                 | 3,8              | 11,3             | 30,8             | 9,7                 | 11,4             | 11,8             |  |
| BSNN60/190  | 50        | 22,2                                           | 10,7                | 4,4              | 13,7             | 35,5             | 10,7                | 13,5             | 13,7             |  |
| BSNN60/220  | 50        | 22,2                                           | 11,6                | 4,9              | 15,1             | 40,0             | 11,6                | 15,4             | 15,7             |  |
| BSNN70/125  | 50        | 15,4                                           | 9,7                 | 3,3              | 9,8              | 22,8             | 9,7                 | 9,7              | 9,8              |  |
| BSNN70/155  | 50        | 17,8                                           | 11,1                | 3,8              | 11,3             | 30,0             | 11,1                | 11,4             | 11,8             |  |
| BSNN73/184  | 50        | 22,2                                           | 12,7                | 4,4              | 13,7             | 35,5             | 12,7                | 13,5             | 13,7             |  |
| BSNN80/120  | 50        | 14,7                                           | 10,8                | 3,3              | 9,8              | 21,6             | 10,8                | 9,7              | 9,8              |  |
| BSNN80/150  | 50        | 17,8                                           | 12,4                | 3,8              | 11,3             | 29,1             | 12,4                | 11,4             | 11,8             |  |
| BSNN80/180  | 50        | 22,2                                           | 13,8                | 4,4              | 13,7             | 35,5             | 13,8                | 13,5             | 13,7             |  |
| BSNN80/210  | 50        | 22,2                                           | 15,1                | 4,9              | 15,1             | 40,0             | 15,1                | 15,4             | 15,7             |  |
| BSNN90/145  | 50        | 17,8                                           | 13,3                | 3,8              | 11,3             | 28,2             | 13,7                | 11,4             | 11,8             |  |
| BSNN100/100 | 50        | 11,0                                           | 8,9                 | 2,7              | 7,5              | 15,3             | 12,1                | 8,1              | 7,8              |  |
| BSNN100/140 | 50        | 17,8                                           | 13,3                | 3,8              | 11,3             | 27,1             | 14,9                | 11,4             | 11,8             |  |
| BSNN100/170 | 50        | 22,2                                           | 16,7                | 4,4              | 13,7             | 35,5             | 16,7                | 13,5             | 13,7             |  |
| BSNN100/200 | 50        | 22,2                                           | 17,8                | 4,9              | 15,1             | 40,0             | 18,3                | 15,4             | 15,7             |  |
| BSNN120/110 | 50        | 12,3                                           | 8,9                 | 3,0              | 7,5              | 17,2             | 13,2                | 8,6              | 7,8              |  |
| BSNN120/160 | 50        | 22,2                                           | 17,8                | 4,4              | 13,7             | 34,4             | 19,3                | 13,5             | 13,7             |  |
| BSNN120/190 | 50        | 22,2                                           | 17,8                | 4,9              | 15,1             | 40,0             | 21,4                | 15,4             | 15,7             |  |
| BSNN140/120 | 50        | 14,5                                           | 12,6                | 3,6              | 9,8              | 22,5             | 18,9                | 10,2             | 9,8              |  |
| BSNN140/150 | 50        | 21,4                                           | 17,8                | 4,4              | 13,7             | 32,0             | 21,7                | 13,5             | 13,7             |  |
| BSNN140/180 | 50        | 22,2                                           | 17,8                | 4,9              | 15,1             | 40,0             | 24,1                | 15,4             | 15,7             |  |

<sup>1)</sup> Für R<sub>2k</sub> ist der Querzug des NT mit HN = B x 4/3 berücksichtigt. Mit Querzugverstärkungen können höhere Werte gemäß ETA-06/0270 ermittelt werden.

Es gilt: 
$$\left(\frac{F_{1/2,d}}{R_{1/2,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0$$

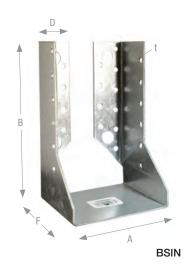
### Beispiel:

Anschluss eines Deckenbalkens 120 x 220 mm an einen Hauptträger mit horizontalen Lasten aus Stabilisierungskräften.

Gewählter Balkenschuh BSNN120/190, Vollausnagelung mit CNA4,0x50 Kammnägeln Einbau im Innenbereich, NKL1, KLED: mittel  $\Rightarrow$   $k_{mod} = 0.8$ 

$$F_{1,d} = 17,4 \text{ kN}$$

$$F_{3,d} = 6,2 \text{ kN}$$


$$R_{1,d} = 40.0 \times 0.8 / 1.3 = 24.6 \text{ kN}$$
  
 $R_{3,d} = 15.4 \times 0.8 / 1.3 = 9.5 \text{ kN}$ 

### Nachweis:

$$\left(\frac{17,4}{24,6}\right)^2 + \left(\frac{6,2}{9,5}\right)^2 = 0.93 < 1.0 = 0k$$

### Balkenschuhe - BSIN





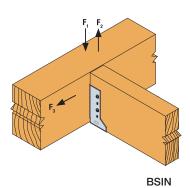
BSIN Balkenschuhe werden zur Verbindung von Nebenträgern mit Hauptträgern oder Stützen verwendet und dürfen in alle Richtungen belastet werden.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke

Befestigung: Der Anschluss erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.










### Produktabmessungen

| Produktabine | SSUITE |     | Tabelle 1 |     |     |          |            |                 |         |
|--------------|--------|-----|-----------|-----|-----|----------|------------|-----------------|---------|
| Art. Nr.     |        | Abn | nessung [ | mm] |     | Lö       | cher und A | Anzahl Nä<br>mm | gel     |
|              |        |     |           |     |     | Teilausr | agelung    | Vollausr        | agelung |
|              | Α      | В   | D         | F   | t   | нт       | NT         | нт              | NT      |
| BSIN40/105   | 40     | 95  | 18        | 82  | 2,0 | 6        | 6          | -               | -       |
| BSIN45/78    | 45     | 78  | 18        | 82  | 2,0 | 4        | 4          | -               | -       |
| BSIN48/166   | 48     | 166 | 19        | 86  | 2,0 | 10       | 10         | -               | -       |
| BSIN60/95    | 60     | 95  | 18        | 82  | 2,0 | 6        | 6          | -               | -       |
| BSIN60/160   | 60     | 160 | 19        | 86  | 2,0 | 10       | 10         | -               | -       |
| BSIN64/93    | 64     | 93  | 34        | 82  | 2,0 | 6        | 4          | 10              | 6       |
| BSIN80/110   | 80     | 110 | 34        | 82  | 2,0 | 10       | 5          | 16              | 9       |
| BSIN80/130   | 80     | 130 | 34        | 82  | 2,0 | 10       | 6          | 16              | 10      |
| BSIN80/150   | 80     | 150 | 34        | 82  | 2,0 | 12       | 6          | 20              | 12      |
| BSIN80/180   | 80     | 180 | 34        | 82  | 2,0 | 14       | 8          | 26              | 15      |
| BSIN80/210   | 80     | 210 | 34        | 82  | 2,0 | 18       | 10         | 32              | 18      |
| BSIN90/145   | 90     | 145 | 34        | 82  | 2,0 | 12       | 6          | 20              | 12      |
| BSIN100/100  | 100    | 100 | 42        | 86  | 2,0 | 8        | 4          | 16              | 8       |
| BSIN100/140  | 100    | 140 | 34        | 82  | 2,0 | 12       | 6          | 20              | 12      |
| BSIN100/170  | 100    | 170 | 34        | 82  | 2,0 | 14       | 8          | 26              | 15      |
| BSIN100/200  | 100    | 200 | 34        | 82  | 2,0 | 18       | 10         | 32              | 18      |
| BSIN120/130  | 120    | 130 | 34        | 82  | 2,0 | 10       | 6          | 20              | 12      |
| BSIN120/160  | 120    | 160 | 34        | 82  | 2,0 | 14       | 8          | 26              | 15      |
| BSIN120/190  | 120    | 190 | 34        | 82  | 2,0 | 18       | 10         | 32              | 18      |
| BSIN140/120  | 140    | 120 | 42        | 86  | 2,0 | 10       | 6          | 20              | 10      |
| BSIN140/180  | 140    | 180 | 42        | 86  | 2,0 | 16       | 8          | 32              | 16      |



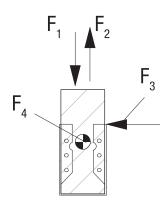
### Anwendungshinweis:

Werden Balkenschuhe am Ende von Hauptträgern positioniert, sind abhängig von der Belastungsrichtung die Mindestrandabstände der Nägel zum belasteten oder unbelasteten Rand zu berücksichtigen.

### Balkenschuhe - BSIN

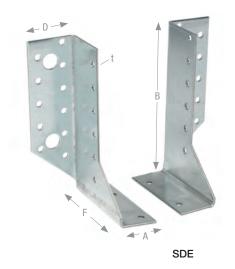
### **SIMPSON Strong-Tie**

### Charakteristische Werte der Tragfähigkeit


Tabelle 2

| Art. Nr.    | CNA Nagel |                  | Charakteristische Werte der Tragfähigkeit [kN] |                  |                  |                    |                    |                  |                  |  |  |  |  |
|-------------|-----------|------------------|------------------------------------------------|------------------|------------------|--------------------|--------------------|------------------|------------------|--|--|--|--|
|             |           |                  | Teilausr                                       | nagelung         |                  |                    | Vollausr           | nagelung         |                  |  |  |  |  |
|             | 4,0x      | R <sub>1,k</sub> | R <sub>2,k</sub>                               | R <sub>3,k</sub> | R <sub>4,k</sub> | R <sub>1,k</sub>   | R <sub>2,k</sub>   | R <sub>3,k</sub> | R <sub>4,k</sub> |  |  |  |  |
| BSIN40/105  | 40        | 5,1              | 3,4                                            | 0,7              | 2,2              |                    |                    |                  |                  |  |  |  |  |
| BSIN45/78   | 40        | 3,1              | 1,9                                            | 0,4              | 1,5              |                    |                    |                  |                  |  |  |  |  |
| BSIN48/166  | 40        | 13,5             | 7,7                                            | 1,7              | 3,7              |                    |                    |                  |                  |  |  |  |  |
| BSIN60/95   | 50        | 5,7              | 4,4                                            | 0,9              | 2,2              |                    |                    |                  |                  |  |  |  |  |
| BSIN60/160  | 50        | 16,6             | 10,0                                           | 2,1              | 3,7              |                    |                    |                  |                  |  |  |  |  |
| BSIN64/93   | 50        | 5,7              | 4,4                                            | 1,1              | 2,9              | 10,3               |                    |                  |                  |  |  |  |  |
| BSIN80/110  | 50        | 10,6             | 10,0                                           | 2,9              | 4,9              | 16,1               |                    |                  |                  |  |  |  |  |
| BSIN80/130  | 50        | 13,4             | 10,0                                           | 2,4              | 4,9              | 20,6               | 14,8               | 2,9              | 7,8              |  |  |  |  |
| BSIN80/150  | 50        | 17,2             | 13,3                                           | 3,2              | 5,9              | 27,3               | 20,7               | 4,3              | 9,8              |  |  |  |  |
| BSIN80/180  | 50        | 20,7             | 17,0                                           | 3,7              | 6,9              | 37,7               | 29,6               | 6,0              | 12,7             |  |  |  |  |
| BSIN80/210  | 50        | 26,6             | 22,2                                           | 5,5              | 8,8              | 44,3               | 40,0               | 8,1              | 15,7             |  |  |  |  |
| BSIN90/145  | 50        | 16,5             | 13,3                                           | 3,2              | 5,9              | 26,1               | 20,7               | 4,4              | 9,8              |  |  |  |  |
| BSIN100/100 | 50        | 9,3              | 7,1                                            | 1,8              | 3,9              | 15,4               | 14,6               | 3,5              | 7,8              |  |  |  |  |
| BSIN100/140 | 50        | 15,8             | 13,3                                           | 3,2              | 5,9              | 24,8               | 20,7               | 4,4              | 9,8              |  |  |  |  |
| BSIN100/170 | 50        | 19,3             | 17,0                                           | 3,7              | 6,9              | 36,3               | 29,6               | 6,0              | 12,7             |  |  |  |  |
| BSIN100/200 | 50        | 26,6             | 22,2                                           | 5,6              | 8,8              | 44,3               | 40,0               | 8,2              | 15,7             |  |  |  |  |
| BSIN120/130 | 50        | 13,4             | 12,7                                           | 2,4              | 4,9              | 22,2               | 20,7               | 2,9              | 7,8              |  |  |  |  |
| BSIN120/160 | 50        | 17,8             | 17,0                                           | 3,8              | 6,9              | 33,4               | 33,4 29,6 6,0 12,7 |                  |                  |  |  |  |  |
| BSIN120/190 | 50        | 25,9             | 22,2                                           | 5,6              | 8,8              | 44,3 40,0 8,3 15,7 |                    |                  |                  |  |  |  |  |
| BSIN140/120 | 50        | 12,5             | 10,0                                           | 2,2              | 4,9              | 21,4 20,6 4,2 9,8  |                    |                  |                  |  |  |  |  |
| BSIN140/180 | 50        | 22,2             | 17,8                                           | 4,4              | 7,8              | 39,9               | 35,5               | 8,5              | 15,7             |  |  |  |  |

### Anwendungshinweis:


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Die Schenkel von schmalen Balkenschuhen mit innenliegenden Schenkeln werden am Hautträgeranschluss in der Breite reduziert. Daher ist in diesen Fällen nur eine Teilausnagelung möglich.



### Balkenschuhe - SDE





SDE sind zweiteilige Balkenschuhe und eignen sich insbesondere zur Anwendung bei Balken mit Zwischenmaßen und/oder bei Sanierungen mit wechselnden Holzbreiten.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20  $\mu m.$ 

Befestigung: Der Anschluss erfolgt mit CNA4,0xℓ Kammnägeln oder CSA5,0xℓ Schrauben. Zur Befestigung der SDE Balkenschuhe an Beton, Stahl oder Mauerwerk sind Löcher Ø13 mm vorhanden.



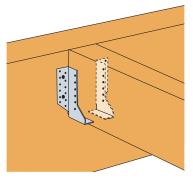


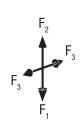


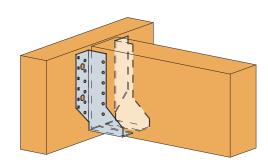
### Produktabmessungen

Tabelle 1

| Art. Nr.  |    | Abn | nessung [ | mm] |     | Anzahl Löcher |    |                      |  |
|-----------|----|-----|-----------|-----|-----|---------------|----|----------------------|--|
|           |    |     |           |     |     | -             | mm | Ø13 mm <sup>1)</sup> |  |
|           |    |     | 1         |     | ı   | Vollausr      |    |                      |  |
|           | Α  | В   | D         | F   | t   | HT            | NT | HT                   |  |
| SDE300/30 | 30 | 118 | 42        | 86  | 2,0 | 18            | 10 | 2 x 2                |  |
| SDE340/30 | 30 | 138 | 42        | 86  | 2,0 | 22            | 12 | 2 x 2                |  |
| SDE380/30 | 30 | 158 | 42        | 86  | 2,0 | 22            | 12 | 2 x 2                |  |
| SDE440/30 | 30 | 188 | 42        | 86  | 2,0 | 28            | 14 | 2 x 2                |  |


<sup>&</sup>lt;sup>1)</sup> Die Lage und Abstände der Bolzenlöcher können der Tabelle zu Beginn dieses Kapitels entnommen werden.


### Charakteristische Werte der Tragfähigkeit


Tabelle 2

| Art. Nr.  | CNA Nagel | Charakteri                    | stische Werte der Tragfäl<br>Vollausnagelung | nigkeit [kN] |  |  |  |  |  |
|-----------|-----------|-------------------------------|----------------------------------------------|--------------|--|--|--|--|--|
|           | 4,0x      | $R_{i,k}$ $R_{2,k}$ $R_{3,k}$ |                                              |              |  |  |  |  |  |
| SDE300/30 | 50        | 20,3                          | 17,6                                         | 14,6         |  |  |  |  |  |
| SDE340/30 | 50        | 26,6                          | 24,0                                         | 15,8         |  |  |  |  |  |
| SDE380/30 | 50        | 26,6                          | 24,0                                         | 13,9         |  |  |  |  |  |
| SDE440/30 | 50        | 33,2 33,2 14,0                |                                              |              |  |  |  |  |  |

 $<sup>^{\</sup>rm 1)}$  Die Kraft  $\rm F_{\rm 3}$  wirkt bei der Hälfte der Balkenschuhhöhe.








SDE380/30

### Balkenschuhe - BSIL



BSIL Balkenschuhe sind insbesondere zum Anschluss von Balken an Stützen konzipiert. Somit lassen sich bei 1-achsiger Belastung Balken an gleich breite Stützen anschließen. Bei einer 2-achsigen Belastung sind die Randabstände gemäß EC5+ NA für die Nägel in der Stütze zu beachten.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke

Befestigung: Der Anschluss erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.



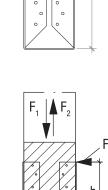


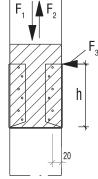




### Produktabmessungen

Tabelle 1 Art. Nr. Löcher und Anzahl Nägel Abmessung [mm] Ø5 mm Teilausnagelung Vollausnagelung Α В D HT NT ΗТ NT BSIL100/190 100 190 40 2,0 8 8 18 16 62 BSIL100/230 100 230 40 2,0 10 10 22 20 62 BSIL120/180 180 2,0 8 8 16 16 62 BSIL120/220 120 220 62 2,0 10 10 20 20


Keine Lagerware - weitere Größen auf Anfrage


Charakteristische Werte der Tragfähigkeit

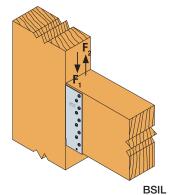
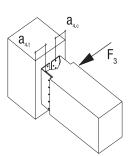

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Tabelle 2

| Art. Nr.    | CNA Nagel | Charakteristische Werte der Tragfähigkeit [kN]                                         |                                 |     |      |      |      |  |  |  |
|-------------|-----------|----------------------------------------------------------------------------------------|---------------------------------|-----|------|------|------|--|--|--|
|             |           | Te                                                                                     | Teilausnagelung Vollausnagelung |     |      |      |      |  |  |  |
|             | 4,0x      | R <sub>1,k</sub> R <sub>2,k</sub> R <sub>3,k</sub> R <sub>1,k</sub> R <sub>2,k</sub> R |                                 |     |      |      |      |  |  |  |
| BSIL100/190 | 50        | 11,0                                                                                   | 10,6                            | 5,5 | 21,8 | 18,8 | 11,2 |  |  |  |
| BSIL100/230 | 50        | 14,9                                                                                   | 14,5                            | 6,4 | 29,9 | 26,8 | 12,9 |  |  |  |
| BSIL120/180 | 50        | 10,3                                                                                   | 9,1                             | 6,3 | 19,4 | 18,2 | 11,5 |  |  |  |
| BSIL120/220 | 50        | 14,2                                                                                   | 13,0                            | 7,4 | 27,3 | 26,0 | 13,4 |  |  |  |








### Anwendungshinweis:

Werden die BSIL Balkenschuhe rechtwinklig zur Einschubrichtung in F3 Richtung beansprucht, ist der Randabstand der Nägel in der Stütze gemäß EC5 + NA zu beachten.



### Balkenschuhe - SBG





SBG Balkenschuhe sind zur Aufnahme in alle Lastrichtungen geeignet. Durch die präzisierte Nagelanordnung im Hauptträger können bei gleicher Tragfähigkeit bis zu 30 % Nägel eingespart werden. Die geringe Auflagertiefe von nur 55 mm erlaubt eine verdeckt liegende Montage in Installationsebenen im Holzrahmenbau.

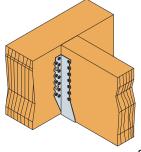
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20  $\mu m.$ 

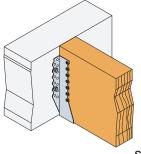
Befestigung: Der Anschluss erfolgt mit CNA4,0xℓ Kammnägeln oder CSA5,0xℓ Schrauben. Zur Befestigung der SBG Balkenschuhe an Beton, Stahl oder Mauerwerk sind Löcher Ø11 mm vorhanden.








Produktabmessungen


Tabelle 1

|            | ungen |     |             |    | Tabelle - |          |          |               |       |                      |  |
|------------|-------|-----|-------------|----|-----------|----------|----------|---------------|-------|----------------------|--|
| Art. Nr.   |       | Al  | omessung [m | m] |           |          | Löch     | er und Anzahl | Nägel |                      |  |
|            |       |     |             |    |           |          | Ø5       | mm            |       | Ø11 mm <sup>1)</sup> |  |
|            |       |     |             |    |           | Teilausr | nagelung |               |       |                      |  |
|            | Α     | В   | D           | F  | t         | HT       | NT       | HT            | NT    | HT                   |  |
| SBG51/164  | 51    | 164 | 28          | 55 | 1,5       | 12       | 6        | 18            | 12    | 4                    |  |
| SBG60/100  | 60    | 100 | 28          | 55 | 1,5       | 8        | 3        | 12            | 6     | 2                    |  |
| SBG60/130  | 60    | 130 | 28          | 55 | 1,5       | 10       | 5        | 16            | 10    | 2                    |  |
| SBG60/160  | 60    | 160 | 28          | 55 | 1,5       | 12       | 6        | 18            | 12    | 4                    |  |
| SBG60/190  | 60    | 190 | 28          | 55 | 1,5       | 14       | 8        | 22            | 14    | 4                    |  |
| SBG60/220  | 60    | 220 | 28          | 55 | 1,5       | 16       | 8        | 26            | 16    | 4                    |  |
| SBG80/120  | 80    | 120 | 28          | 55 | 1,5       | 10       | 5        | 16            | 10    | 2                    |  |
| SBG80/150  | 80    | 150 | 28          | 55 | 1,5       | 12       | 6        | 18            | 12    | 4                    |  |
| SBG80/180  | 80    | 180 | 28          | 55 | 1,5       | 14       | 8        | 22            | 14    | 4                    |  |
| SBG80/210  | 80    | 210 | 28          | 55 | 1,5       | 16       | 8        | 26            | 16    | 4                    |  |
| SBG100/140 | 100   | 140 | 28          | 55 | 1,5       | 12       | 6        | 18            | 12    | 4                    |  |
| SBG100/170 | 100   | 170 | 28          | 55 | 1,5       | 14       | 8        | 22            | 14    | 4                    |  |
| SBG100/200 | 100   | 200 | 28          | 55 | 1,5       | 16       | 8        | 26            | 16    | 4                    |  |
| SBG120/160 | 120   | 160 | 28          | 55 | 1,5       | 14       | 8        | 22            | 14    | 4                    |  |
| SBG120/190 | 120   | 190 | 28          | 55 | 1,5       | 16       | 8        | 26            | 16    | 4                    |  |
| SBG140/180 | 140   | 180 | 28          | 55 | 1,5       | 16       | 8        | 26            | 16    | 4                    |  |

<sup>&</sup>lt;sup>1)</sup> Die Lage und Abstände der Bolzenlöcher können der Tabelle zu Beginn dieses Kapitels entnommen werden.

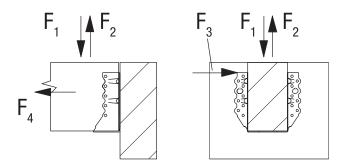






SBG60/190

### Balkenschuhe – **SBG**


### SIMPSON Strong-Tie

### Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr.   | CNA Nagel |                  |           | Charak           | teristische Wert | e der Tragfähigl | ceit [kN]                   |                             |           |  |  |  |
|------------|-----------|------------------|-----------|------------------|------------------|------------------|-----------------------------|-----------------------------|-----------|--|--|--|
|            |           |                  | Teilausr  | agelung          |                  |                  | Vollausn                    | agelung                     |           |  |  |  |
|            | 4,0x      | R <sub>1,k</sub> | $R_{2,k}$ | R <sub>3,k</sub> | R <sub>4,k</sub> | R <sub>1,k</sub> | R <sub>2,k</sub> 1)         | R <sub>3,k</sub>            | $R_{4,k}$ |  |  |  |
| SBG51/105  | 40        | 9,2              | 5,1       | 2,2              | 3,1              |                  | Nur Toilguanas              | Nur Tailauanagalung mäglich |           |  |  |  |
| SBG51/164  | 40        | 14,6             | 11        | 3,2              | 8,9              |                  | Nur Teilausnagelung möglich |                             |           |  |  |  |
| SBG60/100  | 40        | 8,9              | 5,5       | 2,2              | 3,1              | 12,2             | 5,6                         | 5,5                         | 5,9       |  |  |  |
| SBG60/130  | 40        | 12,6             | 9,2       | 2,7              | 6,2              | 18,7             | 10,7                        | 7,7                         | 7,4       |  |  |  |
| SBG60/160  | 40        | 14,6             | 11        | 3,2              | 8,9              | 24,4             | 13,1                        | 9                           | 8,9       |  |  |  |
| SBG60/190  | 40        | 18,3             | 14,6      | 3,6              | 10,4             | 29,3             | 15,5                        | 10,6                        | 10,4      |  |  |  |
| SBG60/220  | 40        | 18,3             | 14,6      | 4,1              | 11,8             | 32,9             | 17,9                        | 12,1                        | 11,8      |  |  |  |
| SBG80/120  | 50        | 14,7             | 9,2       | 3,3              | 7,5              | 21,6             | 13,3                        | 9,7                         | 9,8       |  |  |  |
| SBG80/150  | 50        | 17,8             | 11        | 3,8              | 11,3             | 29,1             | 16,4                        | 11,4                        | 11,8      |  |  |  |
| SBG80/180  | 50        | 22,2             | 14,6      | 4,4              | 13,7             | 35,5             | 19,6                        | 13,5                        | 13,7      |  |  |  |
| SBG80/210  | 50        | 22,2             | 14,6      | 4,9              | 15,1             | 40               | 22,8                        | 15,4                        | 15,7      |  |  |  |
| SBG100/140 | 50        | 17,8             | 11        | 3,8              | 11,3             | 27,1             | 19,2                        | 11,4                        | 11,8      |  |  |  |
| SBG100/170 | 50        | 22,2             | 14,6      | 4,4              | 13,7             | 35,5             | 23,2                        | 13,5                        | 13,7      |  |  |  |
| SBG100/200 | 50        | 22,2             | 14,6      | 4,9              | 15,1             | 40               | 27,2                        | 15,4                        | 15,7      |  |  |  |
| SBG120/160 | 50        | 22,2             | 14,6      | 4,4              | 13,7             | 34,4             | 26,3                        | 13,5                        | 13,7      |  |  |  |
| SBG120/190 | 50        | 22,2             | 14,6      | 4,9              | 15,1             | 40               | 31                          | 15,4                        | 15,7      |  |  |  |
| SBG140/180 | 50        | 22,2             | 14,6      | 4,9              | 15,1             | 40               | 34,3                        | 15,4                        | 15,7      |  |  |  |

<sup>1)</sup> Für R<sub>2,k</sub> ist der Querzug des NT mit HN = B + 20 mm berücksichtigt. Mit Querzugverstärkungen können höhere Werte gemäß ETA-06/0270 ermittelt werden.



SBG Balkenschuhe dürfen in vier Lastrichtungen beansprucht werden.

### Balkenschuhe - BSS





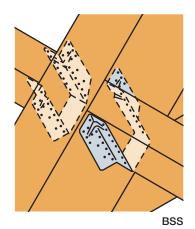
BSS Balkenschuhe mit Rippen zur Aufnahme höherer seitlicher Lasten.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20  $\mu m.$ 

**Befestigung:** Der Anschluss erfolgt mit CNA4,0x $\ell$  Kammnägeln oder CSA5,0x $\ell$  Schrauben.



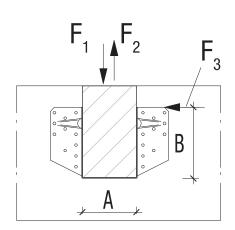





### Produktabmessungen

Tabelle 1

| Art. Nr.   |     | Ab  | Löcher und Anzahl Nägel<br>Ø5 mm<br>Vollausnagelung |    |     |    |    |
|------------|-----|-----|-----------------------------------------------------|----|-----|----|----|
|            | Α   | В   | D                                                   | F  | t   | HT | NT |
| BSS60/90   | 60  | 90  | 58                                                  | 48 | 2,0 | 16 | 8  |
| BSS60/110  | 60  | 110 | 58                                                  | 48 | 2,0 | 20 | 10 |
| BSS80/110  | 80  | 110 | 58                                                  | 48 | 2,0 | 20 | 10 |
| BSS80/130  | 80  | 130 | 58                                                  | 48 | 2,0 | 22 | 12 |
| BSS80/150  | 80  | 150 | 58                                                  | 48 | 2,0 | 26 | 14 |
| BSS100/130 | 100 | 130 | 58                                                  | 48 | 2,0 | 22 | 12 |
| BSS100/150 | 100 | 150 | 58                                                  | 48 | 2,0 | 26 | 14 |
| BSS100/170 | 100 | 170 | 58                                                  | 48 | 2,0 | 28 | 16 |
| BSS100/190 | 100 | 190 | 58                                                  | 48 | 2,0 | 32 | 18 |
| BSS120/170 | 120 | 170 | 58                                                  | 48 | 2,0 | 28 | 16 |
| BSS120/190 | 120 | 190 | 58                                                  | 48 | 2,0 | 32 | 18 |
| BSS120/210 | 120 | 210 | 58                                                  | 48 | 2,0 | 34 | 20 |
| BSS120/230 | 120 | 230 | 58                                                  | 48 | 2,0 | 38 | 22 |
| BSS140/150 | 140 | 150 | 58                                                  | 48 | 2,0 | 26 | 14 |
| BSS160/190 | 160 | 190 | 58                                                  | 48 | 2,0 | 32 | 18 |




### Balkenschuhe - BSS

### Charakteristische Werte der Tragfähigkeit

| ٦ | โล | he | ااد | 0 | 2 |
|---|----|----|-----|---|---|

| Art. Nr.   | CNA Nagel | Charakteristis   | che Werte der Trag | fähigkeit [kN]   |
|------------|-----------|------------------|--------------------|------------------|
|            |           |                  | Vollausnagelung    |                  |
|            | 4,0x      | R <sub>1,k</sub> | R <sub>2,k</sub>   | R <sub>3,k</sub> |
| BSS60/90   | 40        | 8,2              | 7,8                | 4,8              |
| BSS60/110  | 40        | 12,9             | 12,6               | 5,6              |
| BSS80/110  | 50        | 16,9             | 16,6               | 8,1              |
| BSS80/130  | 50        | 22,2             | 19,3               | 9,3              |
| BSS80/150  | 50        | 28,1             | 27,5               | 10,3             |
| BSS100/130 | 50        | 21,6             | 19,3               | 10,0             |
| BSS100/150 | 50        | 28,1             | 27,5               | 11,2             |
| BSS100/170 | 50        | 34,0             | 30,8               | 12,4             |
| BSS100/190 | 50        | 40,6             | 40,0               | 13,4             |
| BSS120/170 | 50        | 34,0             | 30,8               | 13,1             |
| BSS120/190 | 50        | 40,6             | 40,0               | 14,3             |
| BSS120/210 | 50        | 46,7             | 44,4               | 15,4             |
| BSS120/230 | 50        | 53,3             | 48,8               | 16,4             |
| BSS140/150 | 50        | 28,1             | 27,5               | 12,3             |
| BSS160/190 | 50        | 40,6             | 40,0               | 15,5             |



Es gilt: 
$$\left(\frac{F_{1/2,d}}{R_{1/2,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0$$

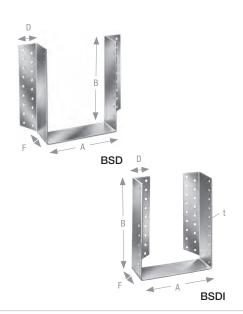
### Beispiel:

Einfeldpfette 100 x 160 an geneigten Hauptträger, 2-achsig belastet. Gewählt: Balkenschuh BSS100/130, Vollausnagelung mit CNA4,0x50 Kammnägeln.

Einbau in NKL2; KLED: mittel  $\Rightarrow$   $k_{mod} = 0.8$ 

### Belastung:

$$F_{1,d} = 8,3 \text{ kN}$$
  
 $F_{3,d} = 4,3 \text{ kN}$ 


$$R_{1,d} = 21.6 \times 0.8 / 1.3 = 13.3 \text{ kN}$$
  
 $R_{3,d} = 10.0 \times 0.8 / 1.3 = 6.2 \text{ kN}$ 

**Nachweis:** 
$$\left(\frac{8,3}{13,3}\right)^2 + \left(\frac{4,3}{6,2}\right)^2 = 0.87 \le 1.0$$

## C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

### Balkenschuhe - BSD / BSDI





BSD / BSDI Balkenschuhe sind für zahlreiche Hauptträger- Nebenträger, bzw. Stützen- Nebenträgerverbindungen anwendbar. Die geringe Auflagertiefe von nur 52 mm erlaubt eine verdecktliegende Montage in Installationsebenen im Holzrahmenbau. BSD mit außenliegenden Schenkeln können nach konstruktionsbedingten Vorgaben mit Bolzenlöchern zum Anschluss an Beton oder Stahl hergestellt werden.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

 $\textbf{Korrosionsschutz:}\ 275\ g/m^2\ beidseitig\ -\ entsprechend\ einer\ Zinkschichtdicke$ von ca. 20 µm. Dieser Artikel ist auch in nichtrostendem Stahl erhältlich.

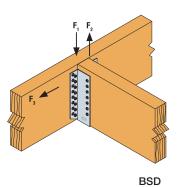
Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0x $\ell$  Schrauben. Zur Befestigung der BSD Balkenschuhe mit außen liegenden Schenkeln an Beton, Stahl oder Mauerwerk kommen Ankerbolzen, passend zum gewählten Lochdurchmesser, zum Einsatz.











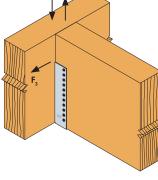



Produktabmessungen

Tabelle 1

| Balkenschuh |      |      | Abmessı | ıng [mm] | Löcher und Anzahl Nägel |   |          |         |    |    |  |  |
|-------------|------|------|---------|----------|-------------------------|---|----------|---------|----|----|--|--|
|             |      |      |         |          |                         |   | Ø5 mm    |         |    |    |  |  |
|             | min. | max. |         |          |                         |   | Teilausn | agelung |    |    |  |  |
|             | Α    |      | В       | D        | F                       | t | HT       | NT      | HT | NT |  |  |
| BSD A/100   | 34   | 250  | 100     | 30       | 52                      | 2 | 8        | 4       | 16 | 8  |  |  |
| BSD A/120   | 34   | 250  | 120     | 30       | 52                      | 2 | 10       | 6       | 20 | 10 |  |  |
| BSD A/140   | 34   | 250  | 140     | 30       | 52                      | 2 | 12       | 6       | 24 | 12 |  |  |
| BSD A/160   | 34   | 250  | 160     | 30       | 52                      | 2 | 14       | 8       | 28 | 14 |  |  |
| BSD A/180   | 34   | 250  | 180     | 30       | 52                      | 2 | 16       | 8       | 32 | 16 |  |  |
| BSD A/200   | 34   | 250  | 200     | 30       | 52                      | 2 | 18       | 10      | 36 | 18 |  |  |
| BSD A/220   | 34   | 250  | 220     | 30       | 52                      | 2 | 20       | 10      | 40 | 20 |  |  |
| BSD A/240   | 34   | 250  | 240     | 30       | 52                      | 2 | 22       | 12      | 44 | 22 |  |  |
| BSD A/260   | 34   | 250  | 260     | 30       | 52                      | 2 | 24       | 12      | 48 | 24 |  |  |
| BSD A/280   | 34   | 250  | 280     | 30       | 52                      | 2 | 26       | 14      | 52 | 26 |  |  |
| BSD A/300   | 34   | 250  | 300     | 30       | 52                      | 2 | 28       | 14      | 56 | 28 |  |  |
| BSD A/320   | 34   | 250  | 320     | 30       | 52                      | 2 | 30       | 16      | 60 | 30 |  |  |




Standardabmessungen siehe Tabelle 5

### Produktabmessungen

Tabelle 2

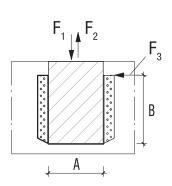
| Balkenschuh |      | Abmessung [mm] |     |    |    |   |          | Löcher und Anzahl Nägel |                 |    |  |  |  |
|-------------|------|----------------|-----|----|----|---|----------|-------------------------|-----------------|----|--|--|--|
|             |      |                |     |    |    |   | Ø5 mm    |                         |                 |    |  |  |  |
|             | min. | max.           |     |    |    |   | Teilausn | agelung                 | Vollausnagelung |    |  |  |  |
|             | I    | 4              | В   | D  | F  | t | HT       | NT                      | HT              | NT |  |  |  |
| BSDI A/100  | 60   | 250            | 100 | 30 | 52 | 2 | 8        | 4                       | 16              | 8  |  |  |  |
| BSDI A/120  | 60   | 250            | 120 | 30 | 52 | 2 | 10       | 6                       | 20              | 10 |  |  |  |
| BSDI A/140  | 60   | 250            | 140 | 30 | 52 | 2 | 12       | 6                       | 24              | 12 |  |  |  |
| BSDI A/160  | 60   | 250            | 160 | 30 | 52 | 2 | 14       | 8                       | 28              | 14 |  |  |  |
| BSDI A/180  | 60   | 250            | 180 | 30 | 52 | 2 | 16       | 8                       | 32              | 16 |  |  |  |
| BSDI A/200  | 60   | 250            | 200 | 30 | 52 | 2 | 18       | 10                      | 36              | 18 |  |  |  |
| BSDI A/220  | 60   | 250            | 220 | 30 | 52 | 2 | 20       | 10                      | 40              | 20 |  |  |  |
| BSDI A/240  | 60   | 250            | 240 | 30 | 52 | 2 | 22       | 12                      | 44              | 22 |  |  |  |
| BSDI A/260  | 60   | 250            | 260 | 30 | 52 | 2 | 24       | 12                      | 48              | 24 |  |  |  |
| BSDI A/280  | 60   | 250            | 280 | 30 | 52 | 2 | 26       | 14                      | 52              | 26 |  |  |  |
| BSDI A/300  | 60   | 250            | 300 | 30 | 52 | 2 | 28       | 14                      | 56              | 28 |  |  |  |
| BSDI A/320  | 60   | 250            | 320 | 30 | 52 | 2 | 30       | 16                      | 60              | 30 |  |  |  |





**BSDI** 

Standardabmessungen siehe Tabelle 5


### Balkenschuhe - BSD / BSDI

### SIMPSON Strong-Tie

### Charakteristische Werte der Tragfähigkeit

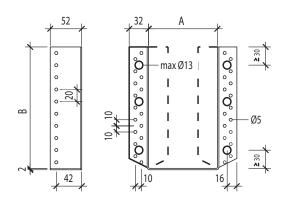
Tabelle 3

| Balker     | ıschuh     | CNA Nagel | Charakteristisc | he Werte der Tra | gfähigkeit [kN] l | pei A ≥ 60 mm ¹) |
|------------|------------|-----------|-----------------|------------------|-------------------|------------------|
|            |            |           | Teilausn        | agelung          | Vollausn          | agelung          |
| Typ Breite | e (A)/Höhe | 4,0x      | $R_{_{1,k}}$    | $R_{2,k}$        | $R_{1,k}$         | $R_{2,k}$        |
| BSD A/100  | BSDI A/100 | 50        | 8,2             | 6,5              | 13,0              | 13,4             |
| BSD A/120  | BSDI A/120 | 50        | 10,9            | 9,3              | 18,5              | 19,1             |
| BSD A/140  | BSDI A/140 | 50        | 14,5            | 12,4             | 24,8              | 25,5             |
| BSD A/160  | BSDI A/160 | 50        | 17,8            | 15,8             | 31,8              | 31,1             |
| BSD A/180  | BSDI A/180 | 50        | 21,9            | 17,8             | 39,3              | 35,5             |
| BSD A/200  | BSDI A/200 | 50        | 25,7            | 22,2             | 44,4              | 40,0             |
| BSD A/220  | BSDI A/220 | 50        | 26,6            | 22,2             | 48,8              | 44,4             |
| BSD A/240  | BSDI A/240 | 50        | 31,1            | 26,6             | 53,3              | 48,8             |
| BSD A/260  | BSDI A/260 | 50        | 31,1            | 26,6             | 57,7              | 53,3             |
| BSD A/280  | BSDI A/280 | 50        | 35,5            | 31,1             | 62,2              | 57,7             |
| BSD A/300  | BSDI A/300 | 50        | 35,5            | 31,1             | 66,6              | 62,2             |
| BSD A/320  | BSDI A/320 | 50        | 40,0            | 35,5             | 71,0              | 66,6             |



### Charakteristische Werte der Tragfähigkeit

Tabelle 4


|           |            |                  |               |             |               |                            |                          |            |              |            | Tabelle 4 |
|-----------|------------|------------------|---------------|-------------|---------------|----------------------------|--------------------------|------------|--------------|------------|-----------|
| Balke     | nschuh     | C                | harakteristis | che Werte d | ler Tragfähig | jkeit [kN] R <sub>3,</sub> | <sub>k</sub> bei Vollaus | nagelung m | it CNA4,0x50 | ) Kammnäge | eln       |
|           |            |                  |               |             |               | Breit                      | te (A)                   |            |              |            |           |
|           |            |                  |               |             |               |                            |                          |            |              |            |           |
| Typ Breit | e (A)/Höhe | 60 <sup>1)</sup> | 80            | 100         | 120           | 140                        | 160                      | 180        | 200          | 220        | 240       |
| BSD A/100 | BSDI A/100 | 4,7              | 6,6           | 7,0         | 7,2           | 7,4                        | 7,5                      | 7,5        | 7,6          | 7,6        | 7,7       |
| BSD A/120 | BSDI A/120 | 5,6              | 8,0           | 8,5         | 8,8           | 9,1                        | 9,2                      | 9,3        | 9,4          | 9,5        | 9,5       |
| BSD A/140 | BSDI A/140 | 6,3              | 9,1           | 9,9         | 10,4          | 10,7                       | 10,9                     | 11,1       | 11,2         | 11,3       | 11,4      |
| BSD A/160 | BSDI A/160 | 7,0              | 10,2          | 11,1        | 11,8          | 12,2                       | 12,5                     | 12,7       | 12,9         | 13,0       | 13,1      |
| BSD A/180 | BSDI A/180 | 7,5              | 11,1          | 12,3        | 13,1          | 13,6                       | 14,0                     | 14,3       | 14,6         | 14,7       | 14,9      |
| BSD A/200 | BSDI A/200 | 8,0              | 11,9          | 13,3        | 14,2          | 14,9                       | 15,5                     | 15,9       | 16,2         | 16,4       | 16,6      |
| BSD A/220 | BSDI A/220 | 8,4              | 12,6          | 14,2        | 15,3          | 16,2                       | 16,8                     | 17,3       | 17,7         | 18,0       | 18,2      |
| BSD A/240 | BSDI A/240 | 8,7              | 13,1          | 14,9        | 16,3          | 17,3                       | 18,1                     | 18,7       | 19,1         | 19,5       | 19,8      |
| BSD A/260 | BSDI A/260 | 9,0              | 13,7          | 15,6        | 17,2          | 18,4                       | 19,3                     | 20,0       | 20,5         | 21,0       | 21,3      |
| BSD A/280 | BSDI A/280 | 9,2              | 14,1          | 16,3        | 18,0          | 19,3                       | 20,3                     | 21,2       | 21,8         | 22,3       | 22,8      |
| BSD A/300 | BSDI A/300 | 9,4              | 14,5          | 16,8        | 18,7          | 20,2                       | 21,4                     | 22,3       | 23,1         | 23,7       | 24,2      |
| BSD A/320 | BSDI A/320 | 9,5              | 14,8          | 17,3        | 19,3          | 21,0                       | 22,3                     | 23,4       | 24,2         | 24,9       | 25,5      |

<sup>1)</sup> Bei Verwendung von CNA4,0x40 Kammnägeln

### Anwendungshinweis:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Bei BSD / BSDI Zwischengrößen gelten für F, und F, die nächst kleineren Werte der Tragfähigkeit. Für die Kraftrichtung F<sub>3</sub> kann zwischen den Werten interpoliert werden.



<sup>&</sup>lt;sup>1)</sup> Werte für weitere Nagellängen siehe ETA-06/0270 und **strongtie.de** 

### Balkenschuhe - BSD / BSDI

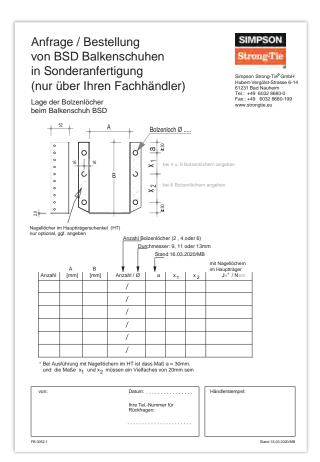


BSD / BSDI Balkenschuhe sind in vielen Abmessungen lieferbar.

Gemäß ETA-06/0270 sind alle Breiten ab 34 mm bis 250 mm, sowie alle Höhen ab 100 bis 320 mm bei einer Blechdicke bis 3,0 mm geregelt. Die Standardblechdicke beträgt 2,0 mm. Auf Anfrage können Blechdicken in 2,5 mm und 3,0 mm gefertigt werden. Abmessungen außerhalb dieser Größen können nach Rücksprache ggf. ohne CE-Kennzeichnung hergestellt werden.

Die gängigsten Größen sind gemäß Tabelle 5 ab Lager lieferbar. Alle weiteren Abmessungen sowie BSD mit Bolzenlöchern sind auf Anfrage kurzfristig erhältlich.

### BSD mit Bolzenlöchern:


Aus den verschiedensten Gründen kann es vorkommen, dass die Positionen oder die Durchmesser der Bolzenlöcher in Standardbalkenschuhen für den aktuellen Anwendungsfall nicht optimal angeordnet sind.

Für diese Fälle können die Höhenlage und die Durchmesser der Bolzenlöcher in den BSD Balkenschuhen frei gewählt werden.

### Produktabmessungen

Tabelle 5

| rodantabiri | abiliessurigeri labeli |          |           |  |  |  |  |  |
|-------------|------------------------|----------|-----------|--|--|--|--|--|
| Art         | . Nr.                  | Abmessur | ngen [mm] |  |  |  |  |  |
| Lage        | rware                  | Α        | В         |  |  |  |  |  |
| BSD100/120  |                        | 100      | 120       |  |  |  |  |  |
| BSD100/240  |                        | 100      | 240       |  |  |  |  |  |
| BSD120/180  |                        | 120      | 180       |  |  |  |  |  |
| BSD120/240  | BSDI120/240            | 120      | 240       |  |  |  |  |  |
| BSD120/300  |                        | 120      | 300       |  |  |  |  |  |
| BSD120/320  |                        | 120      | 320       |  |  |  |  |  |
| BSD140/200  | BSDI140/200            | 140      | 200       |  |  |  |  |  |
| BSD140/220  |                        | 140      | 220       |  |  |  |  |  |
| BSD140/240  | BSDI140/240            | 140      | 240       |  |  |  |  |  |
| BSD140/260  | BSDI140/260            | 140      | 260       |  |  |  |  |  |
| BSD140/300  | BSDI140/300            | 140      | 300       |  |  |  |  |  |
| BSD140/320  |                        | 140      | 320       |  |  |  |  |  |
| BSD160/160  | BSDI160/160            | 160      | 160       |  |  |  |  |  |
| BSD160/200  | BSDI160/200            | 160      | 200       |  |  |  |  |  |
| BSD160/240  |                        | 160      | 240       |  |  |  |  |  |
| BSD160/260  | BSDI160/260            | 160      | 260       |  |  |  |  |  |
| BSD160/280  | BSDI160/280            | 160      | 280       |  |  |  |  |  |
| BSD160/300  | BSDI160/300            | 160      | 300       |  |  |  |  |  |
| BSD160/320  |                        | 160      | 320       |  |  |  |  |  |
| BSD180/180  |                        | 180      | 180       |  |  |  |  |  |
| BSD180/220  | BSDI180/220            | 180      | 220       |  |  |  |  |  |
| BSD180/280  |                        | 180      | 280       |  |  |  |  |  |
| BSD180/320  |                        | 180      | 320       |  |  |  |  |  |
| BSD200/200  | BSDI200/200            | 200      | 200       |  |  |  |  |  |
| BSD200/240  | BSDI200/240            | 200      | 240       |  |  |  |  |  |
| BSD200/280  |                        | 200      | 280       |  |  |  |  |  |



Das Anfrageformular steht auf unserer Website unter:

**strongtie.de** -> Leistungen -> Maßanfertigung nach Maß, zum Download zur Verfügung.



### Balkenschuhe - GLE / GLI





GLE / GLI Balkenschuhe sind als Standardbalkenschuhe für größere Abmessungen geeignet und können Lasten in alle Richtungen abtragen. Die Mehrfachlochung ermöglicht einen Anschluss sowohl an Hauptträger aus Holz, als auch aus Beton. GLI nur für Anschlüsse an Holz.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 um.

**Befestigung:** Der Anschluss an das Holz erfolgt mit CNA4,0x $\ell$  Kammnägeln oder CSA5,0x $\ell$  Schrauben. Der Anschluss an Beton oder Stahl erfolgt mit Ankerbolzen M12.



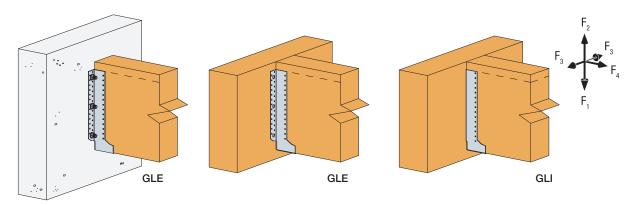


### Produktabmessungen

Tabelle 1

| Balkenschuh 1) |           |         | Abmessungen [mm] |              |      |    |     |          | cher im I         | lauptträ | ger               | Löcher im Nebenträger |           |  |
|----------------|-----------|---------|------------------|--------------|------|----|-----|----------|-------------------|----------|-------------------|-----------------------|-----------|--|
|                |           |         |                  |              |      |    |     | Breite A |                   | Breite A |                   | Breite A              | Breite A  |  |
|                |           | Brei    | te A             | Höhe B       |      |    |     | bis 16   | 60 mm             | ab 16    | 1 mm              | bis 160 mm            | ab 161 mm |  |
|                | Grundform | Min. 2) | Max.             |              | D    | F  | t   | Ø5       | Ø13 <sup>3)</sup> | Ø5       | Ø13 <sup>3)</sup> | Ø5                    | Ø5        |  |
| GLE500/A/2,5   | 500       | 141     | 200              | (500-A) / 2  | 38,5 | 95 | 2,5 | 26       | 4                 | 18       | 4                 | 15                    | 13        |  |
| GLE540/A/2,5   | 540       | 32      | 240              | (540-A) / 2  | 38,5 | 95 | 2,5 | 30       | 4                 | 18       | 4                 | 17                    | 13        |  |
| GLE600/A/2,5   | 600       | 32      | 240              | (600-A) / 2  | 38,5 | 95 | 2,5 | 36       | 4                 | 24       | 4                 | 20                    | 16        |  |
| GLE660/A/2,5   | 660       | 32      | 240              | (660-A) / 2  | 38,5 | 95 | 2,5 | 40       | 6                 | 28       | 6                 | 23                    | 19        |  |
| GLE720/A/2,5   | 720       | 32      | 240              | (720-A) / 2  | 38,5 | 95 | 2,5 | 46       | 6                 | 34       | 6                 | 26                    | 22        |  |
| GLE780/A/2,5   | 780       | 32      | 240              | (780-A) / 2  | 38,5 | 95 | 2,5 | 48       | 6                 | 40       | 6                 | 29                    | 25        |  |
| GLE840/A/2,5   | 840       | 32      | 240              | (840-A) / 2  | 38,5 | 95 | 2,5 | 54       | 6                 | 46       | 6                 | 32                    | 28        |  |
| GLE900/A/2,5   | 900       | 32      | 240              | (900-A) / 2  | 38,5 | 95 | 2,5 | 60       | 6                 | 52       | 6                 | 35                    | 31        |  |
| GLE960/A/2,5   | 960       | 32      | 240              | (960-A) / 2  | 38,5 | 95 | 2,5 | 64       | 8                 | 58       | 6                 | 38                    | 34        |  |
| GLE1020/A/2,5  | 1020      | 32      | 240              | (1020-A) / 2 | 38,5 | 95 | 2,5 | 70       | 8                 | 62       | 8                 | 41                    | 37        |  |

<sup>1)</sup> Siehe Anwendungshinweis


### Anwendungshinweis zu den Abmessungen der GLE und GLI:

GLE / GLI werden aus vorgefertigten Grundformen hergestellt, die Grundformen gibt es in den Standardlängen ab 500 mm bis 1020 mm.

Für die Auswahl von GLI Balkenschuhen mit innenliegenden Schenkeln in der Balkenschuhbezeichnung GLE durch GLI ersetzen.

### Die Artikelnummer eines GLE oder GLI Balkenschuhs setzt sich folgendermaßen zusammen:

GLE { Grundform } / { Breite des Balkenschuhs } / { Blechdicke } oder GLI { Grundform } / { Breite des Balkenschuhs } / { Blechdicke }



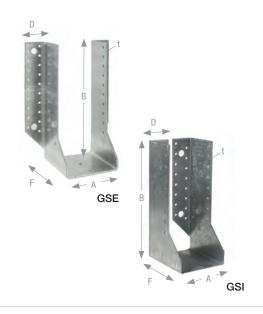
<sup>&</sup>lt;sup>2)</sup> Für GLI Balkenschuhe mit innenliegenden Schenkeln beträgt die Mindestbreite 76 mm.

<sup>&</sup>lt;sup>3)</sup> Die Lage und Abstände der Bolzenlöcher können der Tabelle zu Beginn dieses Kapitels entnommen werden.

### Balkenschuhe - GLE / GLI

### **SIMPSON** Strong-Tie

### Charakteristische Werte der Tragfähigkeit


| Art. Nr.                              | Abmessur   | ngen [mm]  | Charakte | ristische V | Verte der 1      | ragfähigk        | eit [kN] für     | GLE / GLI        | Balkensch | nuhe bei V | erwendung        | yon CNA4         | 1,0x50 Kar       | nmnägelr         |
|---------------------------------------|------------|------------|----------|-------------|------------------|------------------|------------------|------------------|-----------|------------|------------------|------------------|------------------|------------------|
| •                                     |            |            |          | l Nägel     |                  |                  | agelung          |                  |           | l Nägel    |                  |                  | nagelung         |                  |
|                                       | Α          | В          | HT       | NT          | R <sub>1,k</sub> | R <sub>2,k</sub> | R <sub>3,k</sub> | R <sub>4,k</sub> | НТ        | NT         | R <sub>1,k</sub> | R <sub>2,k</sub> | R <sub>3,k</sub> | R <sub>4,k</sub> |
| GLE540/60/2,5                         | 60         | 240        | 14       | 9           | 19,7             | 16,9             | 4,5              | 13,7             | 30        | 17         | 37,2             | 33,5             | 8,5              | 13,7             |
| GLE600/60/2,5                         | 60         | 270        | 16       | 10          | 21,9             | 19,7             | 4,5              | 15,7             | 36        | 20         | 43,8             | 39,4             | 8,9              | 15,7             |
| GLE1020/60/2,5                        | 60         | 480        | 32       | 21          | 46,0             | 41,4             | 5,3              | 31,4             | 70        | 41         | 89,8             | 80,8             | 10,3             | 31,4             |
| GLE600/80/2,5                         | 80         | 260        | 16       | 10          | 21,9             | 19,7             | 4,5              | 15,7             | 36        | 20         | 43,8             | 39,4             | 8,9              | 15,7             |
| GLE660/80/2,5                         | 80         | 290        | 18       | 12          | 26,3             | 23,7             | 4,8              | 17,6             | 40        | 23         | 50,4             | 45,3             | 9,2              | 17,6             |
| GLE720/80/2,5                         | 80         | 320        | 20       | 14          | 30,7             | 27,6             | 5,2              | 19,6             | 46        | 26         | 56,9             | 51,2             | 9,5              | 19,6             |
| GLE1020/80/2,5                        | 80         | 470        | 32       | 21          | 46,0             | 41,4             | 5,3              | 31,4             | 70        | 41         | 89,8             | 80,8             | 10,3             | 31,4             |
| GLE600/100/2,5                        | 100        | 250        | 16       | 10          | 21,9             | 19,7             | 5,4              | 15,7             | 36        | 20         | 43,8             | 39,4             | 10,7             | 15,7             |
| GLE660/100/2,5                        | 100        | 280        | 18       | 12          | 26,3             | 23,7             | 5,8              | 17,6             | 40        | 23         | 50,4             | 45,3             | 11,1             | 17,6             |
| GLE720/100/2,5                        | 100        | 310        | 20       | 14          | 30,7             | 27,6             | 6,3              | 19,6             | 46        | 26         | 56,9             | 51,2             | 11,5             | 19,6             |
| GLE780/100/2,5                        | 100        | 340        | 22       | 15<br>21    | 32,9<br>46,0     | 29,6             | 6,4              | 21,6             | 48        | 29         | 63,5             | 57,2             | 12,2             | 21,6             |
| GLE1020/100/2,5<br>GLE540/120/2,5     | 100<br>120 | 460<br>210 | 32<br>14 | 9           | 19,7             | 41,4<br>16,9     | 6,6<br>6,0       | 31,4<br>13,7     | 70<br>30  | 41<br>17   | 89,8<br>37,2     | 80,8<br>33,5     | 12,8<br>11,3     | 31,4<br>13,7     |
| GLE640/120/2,5                        | 120        | 240        | 16       | 10          | 21,9             | 19,7             | 6,2              | 15,7             | 36        | 20         | 43,8             | 39,4             | 12,2             | 15,7             |
| GLE660/120/2,5                        | 120        | 270        | 18       | 12          | 26,3             | 23,7             | 6,7              | 17,6             | 40        | 23         | 50,4             | 45,3             | 12,8             | 17,6             |
| GLE720/120/2,5                        | 120        | 300        | 20       | 14          | 30,7             | 27,6             | 7,3              | 19,6             | 46        | 26         | 56,9             | 51,2             | 13,4             | 19,6             |
| GLE780/120/2,5                        | 120        | 330        | 22       | 15          | 32,9             | 29,6             | 7,4              | 21,6             | 48        | 29         | 63,5             | 57,2             | 14,3             | 21,6             |
| GLE840/120/2,5                        | 120        | 360        | 24       | 16          | 35,0             | 31,5             | 7,4              | 23,5             | 54        | 32         | 70,1             | 63,1             | 14,6             | 23,5             |
| GLE900/120/2,5                        | 120        | 390        | 28       | 18          | 39,4             | 35,5             | 7,6              | 27,4             | 60        | 35         | 76,7             | 69,0             | 14,8             | 27,4             |
| GLE1020/120/2,5                       | 120        | 450        | 32       | 21          | 46,0             | 41,4             | 7,8              | 31,4             | 70        | 41         | 89,8             | 80,8             | 15,1             | 31,4             |
| GLE540/140/2,5                        | 140        | 200        | 14       | 9           | 19,7             | 16,9             | 6,5              | 13,7             | 30        | 17         | 37,2             | 33,5             | 12,3             | 13,7             |
| GLE600/140/2,5                        | 140        | 230        | 16       | 10          | 21,9             | 19,7             | 6,8              | 15,7             | 36        | 20         | 43,8             | 39,4             | 13,5             | 15,7             |
| GLE660/140/2,5                        | 140        | 260        | 18       | 12          | 26,3             | 23,7             | 7,5              | 17,6             | 40        | 23         | 50,4             | 45,3             | 14,3             | 17,6             |
| GLE720/140/2,5                        | 140        | 290        | 20       | 14          | 30,7             | 27,6             | 8,2              | 19,6             | 46        | 26         | 56,9             | 51,2             | 15,1             | 19,6             |
| GLE780/140/2,5                        | 140        | 320        | 22       | 15          | 32,9             | 29,6             | 8,4              | 21,6             | 48        | 29         | 63,5             | 57,2             | 16,1             | 21,6             |
| GLE840/140/2,5                        | 140        | 350        | 24       | 16          | 35,0             | 31,5             | 8,4              | 23,5             | 54        | 32         | 70,1             | 63,1             | 16,5             | 23,5             |
| GLE900/140/2,5                        | 140        | 380        | 28       | 18          | 39,4             | 35,5             | 8,7              | 27,4             | 60        | 35         | 76,7             | 69,0             | 16,8             | 27,4             |
| GLE1020/140/2,5                       | 140        | 440        | 32       | 21          | 46,0             | 41,4             | 8,9              | 31,4             | 70        | 41         | 89,8             | 80,8             | 17,4             | 31,4             |
| GLE500/160/2,5<br>GLE540/160/2,5      | 160<br>160 | 170<br>190 | 12<br>14 | 8           | 16,1<br>19,7     | 13,6<br>16,9     | 6,5<br>7,0       | 11,8<br>13,7     | 26<br>30  | 15<br>17   | 32,9<br>37,2     | 29,1<br>33,5     | 12,1<br>13,2     | 11,8             |
| GLE340/160/2,5<br>GLE600/160/2,5      | 160        | 220        | 16       | 10          | 21,9             | 19,7             | 7,0              | 15,7             | 36        | 20         | 43,8             | 39,4             | 14,5             | 13,7<br>15,7     |
| GLE660/160/2,5                        | 160        | 250        | 18       | 12          | 26,3             | 23,7             | 8,1              | 17,6             | 40        | 23         | 50,4             | 45,3             | 15,6             | 17,6             |
| GLE720/160/2,5                        | 160        | 280        | 20       | 14          | 30,7             | 27,6             | 9,0              | 19,6             | 46        | 26         | 56,9             | 51,2             | 16,5             | 19,6             |
| GLE840/160/2,5                        | 160        | 340        | 24       | 16          | 35,0             | 31,5             | 9,3              | 23,5             | 54        | 32         | 70,1             | 63,1             | 18,3             | 23,5             |
| GLE1020/160/2,5                       | 160        | 430        | 32       | 21          | 46,0             | 41,4             | 10,0             | 31,4             | 70        | 41         | 89,8             | 80,8             | 19,5             | 31,4             |
| GLE500/180/2,5                        | 180        | 160        | 8        | 7           | 12,4             | 7,7              | 6,2              | 7,8              | 18        | 13         | 26,0             | 16,9             | 11,4             | 7,8              |
| GLE540/180/2,5                        | 180        | 180        | 8        | 7           | 13,6             | 7,7              | 6,1              | 7,8              | 18        | 13         | 28,5             | 16,9             | 11,3             | 7,8              |
| GLE660/180/2,5                        | 180        | 240        | 12       | 10          | 21,3             | 15,1             | 7,8              | 11,8             | 28        | 19         | 41,6             | 34,3             | 14,8             | 11,8             |
| GLE780/180/2,5                        | 180        | 300        | 18       | 13          | 28,5             | 25,6             | 9,0              | 17,6             | 40        | 25         | 54,8             | 49,3             | 17,3             | 17,6             |
| GLE840/180/2,5                        | 180        | 330        | 20       | 14          | 30,7             | 27,6             | 9,2              | 19,6             | 46        | 28         | 61,3             | 55,2             | 18,3             | 19,6             |
| GLE1020/180/2,5                       | 180        | 420        | 28       | 19          | 41,6             | 37,4             | 10,4             | 27,4             | 62        | 37         | 81,0             | 72,9             | 20,2             | 27,4             |
| GLE540/200/2,5                        | 200        | 170        | 8        | 7           | 13,1             | 7,7              | 6,3              | 7,8              | 18        | 13         | 27,7             | 16,9             | 11,6             | 7,8              |
| GLE600/200/2,5                        | 200        | 200        | 10       | 8           | 17,2             | 10,7             | 6,9              | 9,8              | 24        | 16         | 35,0             | 25,9             | 13,7             | 9,8              |
| GLE720/200/2,5                        | 200        | 260        | 14       | 12          | 25,2             | 18,4             | 9,4              | 13,7             | 34        | 22         | 48,2             | 43,4             | 17,1             | 13,7             |
| GLE780/200/2,5                        | 200        | 290        | 18       | 13          | 28,5             | 25,6             | 9,6              | 17,6             | 40        | 25         | 54,8             | 49,3             | 18,3             | 17,6             |
| GLE900/200/2,5                        | 200        | 350        | 24       | 16          | 35,0             | 31,5             | 10,5             | 23,5             | 52        | 31         | 67,9             | 61,1             | 20,3             | 23,5             |
| GLE1020/200/2,5                       | 200        | 410<br>220 | 28       | 19<br>10    | 41,6<br>20,0     | 37,4             | 11,2             | 27,4             | 62        | 37         | 81,0             | 72,9             | 21,8             | 27,4             |
| GLE660/220/2,5<br>GLE780/220/2,5      | 220        | 280        | 12<br>18 | 10          | 20,0             | 15,1<br>25,6     | 8,4<br>10,0      | 11,8<br>17,6     | 28<br>40  | 19<br>25   | 41,6<br>54,8     | 34,3<br>49,3     | 16,0<br>19,2     | 11,8<br>17,6     |
| GLE780/220/2,5<br>GLE900/220/2,5      | 220        | 340        | 24       | 16          | 35,0             | 25,6             | 11,1             | 23,5             | 52        | 31         | 67,9             | 49,3<br>61,1     | 21,5             | 23,5             |
| GLE1020/220/2,5                       | 220        | 400        | 28       | 19          | 41,6             | 37,4             | 12,0             | 27,4             | 62        | 37         | 81,0             | 72,9             | 23,3             | 27,4             |
| GLE660/240/2,5                        | 240        | 210        | 12       | 10          | 19,2             | 15,1             | 8,7              | 11,8             | 28        | 19         | 41,6             | 34,3             | 16,4             | 11,8             |
| GLE720/240/2,5                        | 240        | 240        | 14       | 12          | 23,9             | 18,4             | 10,1             | 13,7             | 34        | 22         | 48,2             | 43,4             | 18,3             | 13,7             |
| GLE840/240/2,5                        | 240        | 300        | 20       | 14          | 30,7             | 27,6             | 10,8             | 19,6             | 46        | 28         | 61,3             | 55,2             | 21,4             | 19,6             |
| · · · · · · · · · · · · · · · · · · · | 240        | 390        | 28       | 19          | 41,6             | 37,4             | 12,6             | 27,4             | 62        | 37         | 81,0             | 72,9             | 24,6             | 27,4             |

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

HT = Hauptträger, NT = Nebenträger Werte für weitere Abmessungen sind in der ETA-06/0270 und auf unserer Website **strongtie.de** aufgeführt.

### Balkenschuhe - GSE / GSI





GSE / GSI Balkenschuhe werden in 4,0 mm Blechdicke hergestellt und sind vornehmlich zur Befestigung größerer Holzquerschnitte an Holz, der Typ GSE auch an Beton oder Stahl gedacht. Gemäß ETA-06/0270 dürfen GSE und GSI Balkenschuhe in der 4,0 mm Ausführung für Brandwiderstandsanforderungen bis 30 Min. eingesetzt werden. GSE / GSI Balkenschuhe können in alle Richtungen Lasten abtragen, für den Brandfall gelten die Regeln gemäß ETA. GSI nur für Anschlüsse an Holz.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20  $\mu m.$ 

Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xℓ Kammnägeln oder CSA5,0xℓ Schrauben. Der Anschluss an Beton oder Stahl erfolgt mit Ankerbolzen M12.









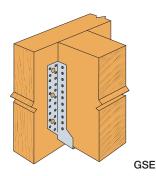
ETA-06/0270 DoP-e06/0270

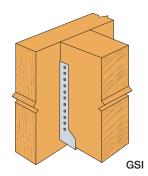
### Produktabmessungen

Tabelle 1

| Balkenschuh 1) |           | Abmessungen [mm] |      |              |      |     |     | Löcher     | im Hauptträge | Löcher im Nebenträger |            |            |
|----------------|-----------|------------------|------|--------------|------|-----|-----|------------|---------------|-----------------------|------------|------------|
|                |           |                  |      |              |      |     |     | Breite A   | Breite A      |                       | Breite A   | Breite A   |
|                |           | Brei             | te A | Höhe B       |      |     |     | bis 136 mm | ab 137 mm     |                       | bis 136 mm | ab 137 mm  |
|                | Grundform | Min. 2)          | Max. |              | D    | F   | t   | Ø5         | Ø5            | Ø13 <sup>3)</sup>     | Ø5         | <b>Ø</b> 5 |
| GSE380/A/4,0   | 380       | 32               | 136  | (380-A) / 2  | 45,5 | 114 | 4,0 | 16         | -             | 4                     | 8          | -          |
| GSE440/A/4,0   | 440       | 32               | 136  | (440-A) / 2  | 45,5 | 114 | 4,0 | 22         | -             | 4                     | 12         | _          |
| GSE500/A/4,0   | 500       | 32               | 200  | (500-A) / 2  | 45,5 | 114 | 4,0 | 28         | 22            | 4                     | 14         | 12         |
| GSE540/A/4,0   | 540       | 32               | 200  | (540-A)/2    | 45,5 | 114 | 4,0 | 32         | 26            | 4                     | 16         | 14         |
| GSE600/A/4,0   | 600       | 32               | 200  | (600-A) / 2  | 45,5 | 114 | 4,0 | 38         | 32            | 4                     | 20         | 18         |
| GSE660/A/4,0   | 660       | 32               | 200  | (660-A) / 2  | 45,5 | 114 | 4,0 | 44         | 38            | 6                     | 22         | 20         |
| GSE720/A/4,0   | 720       | 32               | 200  | (720-A) / 2  | 45,5 | 114 | 4,0 | 50         | 44            | 6                     | 26         | 24         |
| GSE780/A/4,0   | 780       | 32               | 200  | (780-A) / 2  | 45,5 | 114 | 4,0 | 56         | 50            | 6                     | 28         | 26         |
| GSE840/A/4,0   | 840       | 32               | 200  | (840-A) / 2  | 45,5 | 114 | 4,0 | 62         | 56            | 6                     | 32         | 30         |
| GSE900/A/4,0   | 900       | 32               | 200  | (900-A) / 2  | 45,5 | 114 | 4,0 | 68         | 62            | 6                     | 36         | 32         |
| GSE960/A/4,0   | 960       | 32               | 200  | (960-A) / 2  | 45,5 | 114 | 4,0 | 74         | 68            | 6                     | 38         | 34         |
| GSE1020/A/4,0  | 1020      | 32               | 200  | (1020-A) / 2 | 45,5 | 114 | 4,0 | 80         | 74            | 6                     | 40         | 38         |

<sup>1)</sup> Siehe Anwendungshinweis


### Anwendungshinweis zu den Abmessungen der GSE und GSI:


GSE / GSI werden aus vorgefertigten Grundformen hergestellt, die Grundformen gibt es in den Standardlängen ab 380 mm bis 1020 mm.

Für die Auswahl von GSI Balkenschuhen mit innenliegenden Schenkeln in der Balkenschuhbezeichnung GSE durch GSI ersetzen.

### Die Artikelnummer eines GSE oder GSI Balkenschuhs setzt sich folgendermaßen zusammen:

GSE { Grundform } / { Breite des Balkenschuhs } / { Blechdicke } oder GSI { Grundform } / { Breite des Balkenschuhs } / { Blechdicke }





<sup>&</sup>lt;sup>2)</sup> Für GSI Balkenschuhe mit innenliegenden Schenkeln beträgt die Mindestbreite 84 mm.

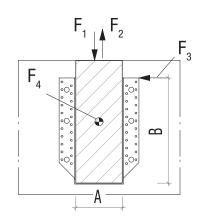
Die Lage und Abstände der Bolzenlöcher können der Tabelle zu Beginn des Kapitels entnommen werden.

### Balkenschuhe - GSE / GSI

### **SIMPSON Strong-Tie**

### Charakteristische Werte der Tragfähigkeit

Tabelle 2


| Art. Nr.      | Abmessur | ngen [mm] | Charakteristische Werte der Tragfähigkeit [kN] für GSE / GSI Balkenschuhe bei Verwendung von CNA4,0x50 Kammn |         |                  |                  |                  |                  |              |                  | nmnägeln         |                  |           |                  |
|---------------|----------|-----------|--------------------------------------------------------------------------------------------------------------|---------|------------------|------------------|------------------|------------------|--------------|------------------|------------------|------------------|-----------|------------------|
|               |          |           | Anzah                                                                                                        | l Nägel |                  | Teilausnagelung  |                  |                  | Anzahl Nägel |                  | Vollausnagelung  |                  |           |                  |
|               | Α        | В         | HT                                                                                                           | NT      | R <sub>1,k</sub> | R <sub>2,k</sub> | R <sub>3,k</sub> | R <sub>4,k</sub> | HT 1)        | NT <sup>2)</sup> | R <sub>1,k</sub> | R <sub>2,k</sub> | $R_{3,k}$ | R <sub>4,k</sub> |
| GSE660/100/4  | 100      | 280       | 22                                                                                                           | 12      | 27,9             | 19,2             | 8,0              | 10,8             | 44           | 22               | 47,9             | 39,0             | 14,6      | 21,6             |
| GSE720/100/4  | 100      | 310       | 26                                                                                                           | 14      | 31,9             | 24,8             | 8,8              | 12,7             | 50           | 26               | 55,8             | 46,1             | 16,3      | 25,5             |
| GSE780/100/4  | 100      | 340       | 28                                                                                                           | 14      | 31,9             | 24,8             | 8,3              | 13,7             | 56           | 28               | 59,8             | 49,6             | 16,6      | 27,4             |
| GSE840/100/4  | 100      | 370       | 32                                                                                                           | 16      | 35,9             | 28,4             | 8,9              | 15,7             | 62           | 32               | 67,8             | 56,7             | 17,9      | 31,4             |
| GSE900/100/4  | 100      | 400       | 34                                                                                                           | 18      | 39,9             | 31,9             | 9,5              | 16,7             | 68           | 36               | 75,8             | 63,8             | 19,0      | 33,3             |
| GSE960/100/4  | 100      | 430       | 38                                                                                                           | 20      | 43,9             | 35,5             | 10,0             | 18,6             | 74           | 38               | 79,8             | 67,4             | 19,0      | 37,2             |
| GSE1020/100/4 | 100      | 460       | 40                                                                                                           | 20      | 43,9             | 35,5             | 9,5              | 19,6             | 80           | 40               | 83,8             | 70,9             | 18,9      | 39,2             |
| GSE660/120/4  | 120      | 270       | 22                                                                                                           | 12      | 27,9             | 19,2             | 8,7              | 10,8             | 44           | 22               | 47,9             | 39,0             | 16,0      | 21,6             |
| GSE720/120/4  | 120      | 300       | 26                                                                                                           | 14      | 31,9             | 24,8             | 9,7              | 12,7             | 50           | 26               | 55,8             | 46,1             | 18,0      | 25,5             |
| GSE780/120/4  | 120      | 330       | 28                                                                                                           | 14      | 31,9             | 24,8             | 9,2              | 13,7             | 56           | 28               | 59,8             | 49,6             | 18,5      | 27,4             |
| GSE840/120/4  | 120      | 360       | 32                                                                                                           | 16      | 35,9             | 28,4             | 10,0             | 15,7             | 62           | 32               | 67,8             | 56,7             | 20,1      | 31,4             |
| GSE900/120/4  | 120      | 390       | 34                                                                                                           | 18      | 39,9             | 31,9             | 10,7             | 16,7             | 68           | 36               | 75,8             | 63,8             | 21,5      | 33,3             |
| GSE960/120/4  | 120      | 420       | 38                                                                                                           | 20      | 43,9             | 35,5             | 11,4             | 18,6             | 74           | 38               | 79,8             | 67,4             | 21,6      | 37,2             |
| GSE1020/120/4 | 120      | 450       | 40                                                                                                           | 20      | 43,9             | 35,5             | 10,8             | 19,6             | 80           | 40               | 83,8             | 70,9             | 21,6      | 39,2             |
| GSE720/140/4  | 140      | 290       | 24                                                                                                           | 12      | 27,9             | 21,3             | 9,3              | 11,8             | 44           | 24               | 51,9             | 39,0             | 18,6      | 23,5             |
| GSE780/140/4  | 140      | 320       | 26                                                                                                           | 14      | 31,9             | 24,8             | 10,4             | 12,7             | 50           | 26               | 55,8             | 46,1             | 19,3      | 25,5             |
| GSE840/140/4  | 140      | 350       | 30                                                                                                           | 16      | 35,9             | 28,4             | 11,4             | 14,7             | 56           | 30               | 63,8             | 53,2             | 21,4      | 29,4             |
| GSE900/140/4  | 140      | 380       | 32                                                                                                           | 16      | 35,9             | 28,4             | 10,9             | 15,7             | 62           | 32               | 67,8             | 56,7             | 21,8      | 31,4             |
| GSE960/140/4  | 140      | 410       | 34                                                                                                           | 18      | 39,9             | 31,9             | 11,8             | 16,7             | 68           | 34               | 71,8             | 60,3             | 22,2      | 33,3             |
| GSE1020/140/4 | 140      | 440       | 38                                                                                                           | 20      | 43,9             | 35,5             | 12,5             | 18,6             | 74           | 38               | 79,8             | 67,4             | 23,8      | 39,2             |
| GSE720/160/4  | 160      | 280       | 24                                                                                                           | 12      | 27,9             | 21,3             | 9,7              | 11,8             | 44           | 24               | 51,9             | 39,0             | 19,5      | 23,5             |
| GSE780/160/4  | 160      | 310       | 26                                                                                                           | 14      | 31,9             | 24,8             | 11,0             | 12,7             | 50           | 26               | 55,8             | 46,1             | 20,4      | 25,5             |
| GSE840/160/4  | 160      | 340       | 30                                                                                                           | 16      | 35,9             | 28,4             | 12,1             | 14,7             | 56           | 30               | 63,8             | 53,2             | 22,7      | 29,4             |
| GSE900/160/4  | 160      | 370       | 32                                                                                                           | 16      | 35,9             | 28,4             | 11,7             | 15,7             | 62           | 32               | 67,8             | 56,7             | 23,3      | 31,4             |
| GSE960/160/4  | 160      | 400       | 34                                                                                                           | 18      | 39,9             | 31,9             | 12,6             | 16,7             | 68           | 34               | 71,8             | 60,3             | 23,8      | 33,3             |
| GSE1020/160/4 | 160      | 430       | 38                                                                                                           | 20      | 43,9             | 35,5             | 13,5             | 18,6             | 74           | 38               | 79,8             | 67,4             | 25,6      | 39,2             |
| GSE780/180/4  | 180      | 300       | 26                                                                                                           | 14      | 31,9             | 24,8             | 11,4             | 12,7             | 50           | 26               | 55,8             | 46,1             | 21,2      | 25,5             |
| GSE840/180/4  | 180      | 330       | 30                                                                                                           | 16      | 35,9             | 28,4             | 12,6             | 14,7             | 56           | 30               | 63,8             | 53,2             | 23,7      | 29,4             |
| GSE900/180/4  | 180      | 360       | 32                                                                                                           | 16      | 35,9             | 28,4             | 12,2             | 15,7             | 62           | 32               | 67,8             | 56,7             | 24,5      | 31,4             |
| GSE960/180/4  | 180      | 390       | 34                                                                                                           | 18      | 39,9             | 31,9             | 13,3             | 16,7             | 68           | 34               | 71,8             | 60,3             | 25,1      | 33,3             |
| GSE1020/180/4 | 180      | 420       | 38                                                                                                           | 20      | 43,9             | 35,5             | 14,3             | 18,6             | 74           | 38               | 79,8             | 67,4             | 27,2      | 37,2             |
| GSE780/200/4  | 200      | 290       | 26                                                                                                           | 14      | 31,9             | 24,8             | 11,8             | 12,7             | 50           | 26               | 55,8             | 46,1             | 21,8      | 25,5             |
| GSE840/200/4  | 200      | 320       | 30                                                                                                           | 16      | 35,9             | 28,4             | 13,1             | 14,7             | 56           | 30               | 63,8             | 53,2             | 24,5      | 29,4             |
| GSE900/200/4  | 200      | 350       | 32                                                                                                           | 16      | 35,9             | 28,4             | 12,7             | 15,7             | 62           | 32               | 67,8             | 56,7             | 25,4      | 31,4             |
| GSE960/200/4  | 200      | 380       | 34                                                                                                           | 18      | 39,9             | 31,9             | 13,9             | 16,7             | 68           | 34               | 71,8             | 60,3             | 26,2      | 33,3             |
| GSE1020/200/4 | 200      | 410       | 38                                                                                                           | 20      | 43,9             | 35,5             | 15,0             | 18,6             | 74           | 38               | 79,8             | 67,4             | 28,5      | 37,2             |

HT = Hauptträger, NT = Nebenträger

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Die charakteristischen Werte der Tragfähigkeit in Tabelle 2 gelten gleichermaßen für GSI Balkenschuhe mit innenliegenden Schenkeln. Bei Rohdichten > 350 kg/m³ können höhere Tragwerte in Ansatz gebracht werden.

Für weitere Balkenschuhgrößen und andere Nagellängen können die Werte der ETA-06/0270 oder der Website **strongtie.de** entnommen werden.



### Balkenschuhe - GSE / GSI







Für GSE und GSI Balkenschuhe in 4,0 mm Blechdicke und einer Breite ab 100 mm ist in der ETA-06/0270 die Brandbemessung bei einer direkten Beflammung, für die Feuerwiderstandsdauer von 30 Minuten geregelt.

### Berechnungsvoraussetzungen:

- • Für die Brandbemessung sind vom EC5 abweichende Werte für  $k_{mod}$ ,  $\gamma M$ ,  $\gamma G$ ,  $\gamma Q$  usw. einzusetzen.
- Die GSE und GSI Balkenschuhe müssen mit Kammnägeln CNA4,0x75 oder länger voll ausgenagelt werden.
   Statt CNA Kammnägeln können auch Schrauben CSA5,0x80 verwendet werden.

### Höhe [mm] der GSE Balkenschuhe

Tabelle 3

| Balkenschuh   | bei Balkenbreite [mm] |     |     |     |     |     |  |  |  |
|---------------|-----------------------|-----|-----|-----|-----|-----|--|--|--|
|               | 100                   | 120 | 140 | 160 | 180 | 200 |  |  |  |
| GSE380/A/4,0  | 140                   | 130 | _   | _   | -   | _   |  |  |  |
| GSE440/A/4,0  | 170                   | 160 | 150 | 140 | -   | _   |  |  |  |
| GSE500/A/4,0  | 200                   | 190 | 180 | 170 | 160 | 150 |  |  |  |
| GSE540/A/4,0  | 220                   | 210 | 200 | 190 | 180 | 170 |  |  |  |
| GSE600/A/4,0  | 250                   | 240 | 230 | 220 | 210 | 200 |  |  |  |
| GSE660/A/4,0  | 280                   | 270 | 260 | 250 | 240 | 230 |  |  |  |
| GSE720/A/4,0  | 310                   | 300 | 290 | 280 | 270 | 260 |  |  |  |
| GSE780/A/4,0  | 340                   | 330 | 320 | 310 | 300 | 290 |  |  |  |
| GSE840/A/4,0  | 370                   | 360 | 350 | 340 | 330 | 320 |  |  |  |
| GSE900/A/4,0  | 400                   | 390 | 380 | 370 | 360 | 350 |  |  |  |
| GSE960/A/4,0  | 430                   | 420 | 410 | 400 | 390 | 380 |  |  |  |
| GSE1020/A/4,0 | 460                   | 450 | 440 | 430 | 420 | 410 |  |  |  |

Die Tabellen 3 und 4 gelten für GSI Balkenschuhe gleichermaßen.

R30-Tragfähigkeit

Tabelle 4

| Balkenschuh   | Balkenbreite [mm] |       |       |       |       |       |  |  |  |  |
|---------------|-------------------|-------|-------|-------|-------|-------|--|--|--|--|
|               | 100               | 120   | 140   | 160   | 180   | 200   |  |  |  |  |
| GSE380/A/4,0  | 1,00              | 1,00  | _     | -     | _     | _     |  |  |  |  |
| GSE440/A/4,0  | 2,52              | 2,52  | 2,52  | 2,52  | _     | _     |  |  |  |  |
| GSE500/A/4,0  | 3,55              | 3,55  | 2,52  | 2,52  | 2,52  | 2,52  |  |  |  |  |
| GSE540/A/4,0  | 4,72              | 4,72  | 3,55  | 3,55  | 3,55  | 3,55  |  |  |  |  |
| GSE600/A/4,0  | 7,30              | 7,30  | 5,98  | 5,98  | 5,98  | 5,98  |  |  |  |  |
| GSE660/A/4,0  | 8,65              | 8,65  | 7,30  | 7,30  | 7,30  | 7,30  |  |  |  |  |
| GSE720/A/4,0  | 11,40             | 11,40 | 10,03 | 10,03 | 10,03 | 10,03 |  |  |  |  |
| GSE780/A/4,0  | 12,76             | 12,76 | 11,40 | 11,40 | 11,40 | 11,40 |  |  |  |  |
| GSE840/A/4,0  | 15,44             | 15,44 | 14,11 | 14,11 | 14,11 | 14,11 |  |  |  |  |
| GSE900/A/4,0  | 18,04             | 18,04 | 15,44 | 15,44 | 15,44 | 15,44 |  |  |  |  |
| GSE960/A/4,0  | 19,32             | 19,32 | 16,75 | 16,75 | 16,75 | 16,75 |  |  |  |  |
| GSE1020/A/4,0 | 20,57             | 20,57 | 19,32 | 19,32 | 19,32 | 19,32 |  |  |  |  |

Vertikale charakteristische R30-Tragfähigkeit der GSE 4,0 Balkenschuhe  $F_{_{\rm V,Rk,II}}\left[\rm kN\right]$ 

Nachweis:

R<sub>d,30,[i</sub>

# Balkenschuhe - GSE / GSI



Seit der Werkstoff Holz für anspruchsvolle Bauten immer häufiger eingesetzt wird, steigt die Anzahl der Fälle in denen Ansprüche an den Brandschutz gestellt werden. Ist eine Einkapselung der brandgefährdeten Bauteile nicht möglich, sind bei der Bemessung von Holzkonstruktionen für den Brandfall, neben den Bauteilen, auch die Verbindungen nachzuweisen. Dieser Nachweis erfolgt über eine sogenannte Heißbemessung. Hierbei wird beim Werkstoff Holz der Restquerschnitt aufgrund einer festgelegten Abbrandrate ermittelt, bei außenliegenden Holzverbindern erfolgt der Nachweis über Versuche.

In vielen Fällen sind Anschlüsse im Holzbau für eine Feuerwiderstandsdauer von mind. 30 Minuten zu bemessen. Die DIN 4102-Teil 2 regelt die Feuerwiderstandsklassen auf nationaler Ebene, in der die Bauteile von F30 bis F180 eingeteilt werden. Die EN13501-Teil 2 regelt die Feuerwiderstandsklassen auf europäischer Ebene, in der die erforderlichen Leistungseigenschaften der Bauteile über das Buchstabenkürzel "R" (Resistant) und der Brandschutzdauer in Minuten angegeben werden. R30 bedeutet, dass bei Einhaltung der angegebenen Brandtragfähigkeit die Standsicherheit des Bauteils in einem Normfeuer für 30 Minuten gewährleistet ist.

### Beispielrechnung für einen Nachweis einer 30-minütigen Brandbeanspruchung

Nachweis: 
$$\frac{E_{d,fi}}{R_{d,30,fi}} \le 1,0$$

### Annahmen

- Einfeldträger in Wohngebäude
- Ständige Lasten  $G_k = 1,7 \text{ kN/m}^2$ ; Verkehrslasten  $Q_k = 2,0 \text{ kN/m}^2$  (Kategorie A)
- Holzbalken C24; b/h = 100/220 mm; Stützweite I = 4,4 m; Achsmaß e = 50 cm
- Gewählter Balkenschuh GSE500/100/4 (b/h = 100 mm / 200 mm)

### Ermittlung der Einwirkung

$$E_d = (1,35 \times G_k + 1,5 \times Q_k) \times e \times 1/2 = (1,35 \times 1,7 + 1,5 \times 2,0) \times 0,5 \times 4,4/2 = 5,82 \text{ kN}$$

$$\eta_{\phi\iota} = \frac{G_{_{\! k}} + \Psi_{_{\! f}} \times Q_{_{\! k}}}{G_{_{\! k}} \times \gamma_{_{\! G}} + Q_{_{\! k}} \times \gamma_{_{\! G}}} = \frac{1,7 + 0,3 \times 2,0}{1,7 \times 1,35 + 2,0 \times 1,5} = 0,44 \\ \text{gemäß EN1995-1-2:2010-12 / 2.4.2(2.9)}$$

 $\Psi_{_{\rm fl}}$  = Kombinationsbeiwert für häufige Werte veränderlicher Einwirkungen im Brandfall, gegeben als  $\Psi_{_{1,1}}$  oder  $\Psi_{_{2,1}}$ , siehe EN1991-1-1-2; 2010-12 (4.3.1)

NDP zu 2.4.2(2.9) Für Nutzlasten der Kategorie E nach DIN EN1991-1-1-1 gilt der Abminderungsfaktor  $\eta_{\phi_1}$  = 0,7, ansonsten ist  $\eta_{\sigma_1}$  = 0,6 zu verwenden.

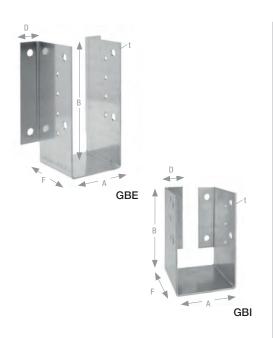
$$\eta_{_{\phi_{I}}} = 0,44 < \eta_{_{\phi_{I},NDP}} = 0,6 \Rightarrow \text{gew\"{a}hlt 0,6}$$
 gem\"{a}ß EN1995-1-2 / NA: 2010-12

$$\mathsf{E}_{_{d,fi}} = \mathsf{E}_{_{d}} \, x \, \eta_{_{\phi_{I}}} = 5,82 \, \, \text{k N} \, x \, 0,6 = 3,49 \, \, \text{kN} \\ \\ \mathsf{gem\"{a}\emph{B}} \, \, \mathsf{EN1995-1-2:2010-12} \, / \, \, 2.4.2 \\ \mathsf{(2.8)} \, \, \mathsf{EN1995-1-2:2010-12} \, / \, \, \mathsf{EN1995-12-2:2010-12} \, / \, \, \mathsf{EN1995-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-12-2:2010-1$$

### Ermittlung des Widerstandes

$$F_{v,Fk,fi} = 3,55 \text{ kN}$$
 gemäß ETA-06/0270 Anhang D20 Tabelle 3

$$\gamma_{\rm M,fi} = 1,0 \text{ im Brandfall} \qquad \qquad \text{gem\"{a}\emph{B} EN1995-1-2 / NA:2010-12 NDP zu } 2.3(1)$$


$$R_{\text{d,30,fi}} = F_{\text{v,Rk,fi}} \, / \, \gamma_{\text{M,fi}} = 3,55 \text{ kN} \, / \, 1,0 = 3,55 \text{ kN}$$

### Nachweis

$$E_{d.fi} / R_{d.30.fi} = 3,49 / 3,55 = 0,99 < 1,0$$

### Balkenschuhe - GBE / GBI





GBE / GBI Balkenschuhe wurden für Nebenträger mit großen Abmessungen zum Anschluss an Holz, Beton oder Stahl entwickelt. Sie kommen mit nur wenigen Verbindungsmitteln aus, wodurch sie relativ schnell montierbar und auch wieder lösbar sind. GBE / GBI Balkenschuhe sind für alle Lastrichtungen zugelassen und die 4 mm Blechdicke macht sie äußerst robust.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz:  $275 \text{ g/m}^2$  beidseitig - entsprechend einer Zinkschichtdicke von ca.  $20 \ \mu m$ .

**Befestigung:** GBE / GBI werden an Hauptträgern aus Holz und an Nebenträgern stets mit Durchgangsbolzen mit einer Mindestgüte von 4.6 durch Ø16 mm Bohrungen angeschlossen. Auf der Rückseite von Hauptträgern aus Holz müssen Holzbauscheiben mit einem Mindestaußendurchmesser von 48 mm verwendet werden. Unter den Bolzenköpfen oder Muttern auf den Balkenschuhen werden U-Scheiben nach DIN125 eingesetzt.

Zur Verstärkung des Hauptträgeranschlusses dürfen passende Dübel besonderer Bauart C2 oder C11 verwendet werden. Der Anschluss an Beton oder Stahl wird mit Ankerbolzen M16 ausgeführt. Der Abstand zwischen Hauptträger und Hirnholz des Nebenträgers darf beim GBE max. 3 mm und beim GBI max. 15 mm betragen.







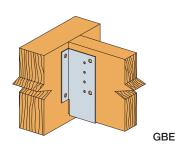
ETA-06/0270 DoP-e06/0270

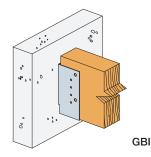
### Produktabmessungen

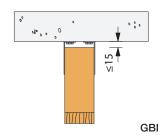
Tabelle 1

| Balkenschuh 1) |           |                            | Al           | Löcher im Haupt-/ Nebenträger |    |     |     |                         |                         |                         |
|----------------|-----------|----------------------------|--------------|-------------------------------|----|-----|-----|-------------------------|-------------------------|-------------------------|
|                | Grundform | Brei<br>Min. <sup>2)</sup> | te A<br>Max. | Höhe B                        | D  | F   | t   | HT<br>Ø18 <sup>3)</sup> | NT<br>Ø18 <sup>3)</sup> | NT<br>Ø11 <sup>3)</sup> |
| GBE600/A/4,0   | 600       | 75 (120)                   | 225          | (600-A)/2                     | 54 | 156 | 4,0 | 4                       | 4                       | 6                       |
| GBE750/A/4,0   | 750       | 75 (120)                   | 225          | (750-A)/2                     | 54 | 156 | 4,0 | 4                       | 4                       | 8                       |
| GBE900/A/4,0   | 900       | 75 (120)                   | 225          | (900-A)/2                     | 54 | 156 | 4,0 | 6                       | 6                       | 12                      |
| GBE1050/A/4,0  | 1050      | 75 (120)                   | 225          | (1050-A)/2                    | 54 | 156 | 4,0 | 6                       | 6                       | 14                      |
| GBE1200/A/4,0  | 1200      | 75 (120)                   | 225          | (1200-A)/2                    | 54 | 156 | 4,0 | 8                       | 8                       | 18                      |
| GBE1350/A/4,0  | 1350      | 75 (120)                   | 225          | (1350-A)/2                    | 54 | 156 | 4,0 | 8                       | 8                       | 20                      |
| GBE1500/A/4,0  | 1500      | 75 (120)                   | 225          | (1500-A)/2                    | 54 | 156 | 4,0 | 10                      | 10                      | 24                      |

<sup>1)</sup> Siehe Anwendungshinweis


### Anwendungshinweis zu den Abmessungen der GBE und GBI:


GBE / GBI Grundformen gibt es in Standardlängen ab 600 mm bis 1500 mm, in Schritten von 150 mm.


Für die Auswahl von GBI Balkenschuhen mit innenliegenden Schenkeln in der Balkenschuhbezeichnung GBE durch GBI ersetzen.

### Die Artikelnummer eines GBE oder GBI Balkenschuhs setzt sich folgendermaßen zusammen:

 $GBE \ \{ \ Grundform \ \} \ / \ \{ \ Breite \ des \ Balkenschuhs \ \} \ / \ \{ \ Blechdicke \ \} \ oder \ GBI \ \{ \ Grundform \ \} \ / \ \{ \ Breite \ des \ Balkenschuhs \ \} \ / \ \{ \ Blechdicke \ \} \$ 







<sup>&</sup>lt;sup>2)</sup> Für GBI Balkenschuhe mit innenliegenden Schenkeln beträgt die Mindestbreite 120 mm.

<sup>&</sup>lt;sup>3)</sup> Die Lage und Abstände der Bolzenlöcher können der Tabelle zu Beginn des Kapitels entnommen werden.

# Balkenschuhe - GBE / GBI

SIMPSON **Strong-Tie** 

Holz/Holz-Verbindung mit Bolzen Ø16 mm im Neben- und Hauptträger Bolzengüte 4.6 (ohne Dübel besonderer Bauart) Brettschichtholz GL24c

# Charakteristische Werte der Tragfähigkeit

Tabelle 2

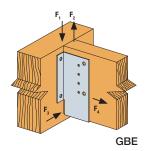
| Balkenschuh   | Abmessung [mm]       |                  |                  | Tragfähigkeit [k<br>blzen Ø16 mm - G | -         |
|---------------|----------------------|------------------|------------------|--------------------------------------|-----------|
|               | A 1)                 | R <sub>1,k</sub> | R <sub>2,k</sub> | R <sub>3,k</sub>                     | $R_{4,k}$ |
| GBE600/A/4,0  |                      | 34,5             | 19,3             | 12,7                                 | 25,6      |
| GBE750/A/4,0  |                      | 38,2             | 30,8             | 12,7                                 | 36,3      |
| GBE900/A/4,0  |                      | 69,6             | 45,1             | 12,7                                 | 47,0      |
| GBE1050/A/4,0 | 100–220<br>(120–220) | 69,6             | 53,7             | 12,7                                 | 57,7      |
| GBE1200/A/4,0 | (120 220)            | 92,8             | 72,8             | 12,7                                 | 68,4      |
| GBE1350/A/4,0 |                      | 92,8             | 79,4             | 12,7                                 | 79,1      |
| GBE1500/A/4,0 |                      | 116,0            | 101,1            | 12,7                                 | 89,9      |

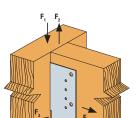


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

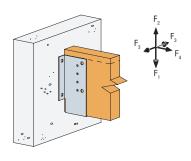
Holz/Beton-Verbindung mit Bolzen im Neben- und Hauptträger. Der Nachweis der Bolzen im Beton ist gesondert zu führen.

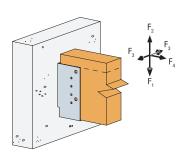
# Charakteristische Werte der Tragfähigkeit


Tabelle 3


| Balkenschuh   | Abmessung [mm] |              |                  | Tragfähigkeit [kl<br>olzen Ø16 mm - G | *    |
|---------------|----------------|--------------|------------------|---------------------------------------|------|
|               | А              | $R_{_{1,k}}$ | R <sub>3,k</sub> | R <sub>4,k</sub>                      |      |
| GBE600/A/4,0  |                | 34,5         | 19,3             | 12,7                                  | 25,6 |
| GBE750/A/4,0  |                | 58,0         | 30,8             | 12,7                                  | 36,3 |
| GBE900/A/4,0  |                | 76,9         | 45,1             | 12,7                                  | 47,0 |
| GBE1050/A/4,0 | 100–220        | 85,2         | 53,7             | 12,7                                  | 57,7 |
| GBE1200/A/4,0 |                | 104,3        | 72,8             | 12,7                                  | 68,4 |
| GBE1350/A/4,0 |                | 110,9        | 79,4             | 12,7                                  | 79,1 |
| GBE1500/A/4,0 |                | 132,6        | 101,1            | 12,7                                  | 89,9 |

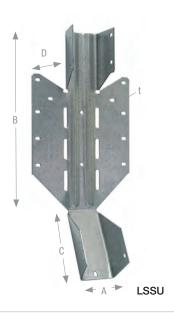
# Charakteristische Werte der Tragfähigkeit


Tabelle 4


| Balkenschuh   | Abmessung [mm] |           |           | Tragfähigkeit [kl<br>blzen Ø16 mm - G | *         |
|---------------|----------------|-----------|-----------|---------------------------------------|-----------|
|               | А              | $R_{1,k}$ | $R_{2,k}$ | $R_{3,k}$                             | $R_{4,k}$ |
| GBI600/A/4,0  |                | 34,5      | 19,3      | 12,7                                  | 25,6      |
| GBI750/A/4,0  |                | 57,9      | 30,8      | 12,7                                  | 36,3      |
| GBI900/A/4,0  |                | 72,6      | 45,1      | 12,7                                  | 47,0      |
| GBI1050/A/4,0 | 120–220        | 80,8      | 53,7      | 12,7                                  | 57,7      |
| GBI1200/A/4,0 |                | 99,9      | 72,8      | 12,7                                  | 68,4      |
| GBI1350/A/4,0 |                | 106,6     | 79,4      | 12,7                                  | 79,1      |
| GBI1500/A/4,0 |                | 128,3     | 101,1     | 12,7                                  | 89,9      |






GBI





# EWP Formteile - LSSU





LSSU sind für vertikal geneigte und / oder horizontal schräge Anschlüsse geeignet. Eine Stegverstärkung ist in jedem Fall erforderlich.

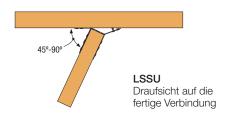
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

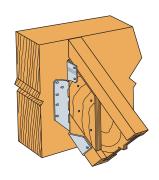
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Die Befestigung erfolgt mit CNA3,7x50 Kammnägeln im Hauptträger und mit N3.75x30SH Drillnägeln im Nebenträger.

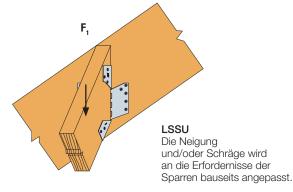


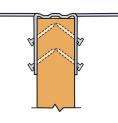





Produktabmessungen


Tabelle 1


| Art. Nr.   | Ersatz für |    | Abı | nessung [m | m] |             | Löcher [mm] |         |  |
|------------|------------|----|-----|------------|----|-------------|-------------|---------|--|
|            |            |    |     |            |    | Hauptträger | Nebenträger |         |  |
|            |            | Α  | В   | С          | D  | t           | □ 4 x 6     | □ 4 x 6 |  |
| LSSU216/45 | LSSUI25    | 48 | 216 | 89         | 43 | 1,2         | 10          | 7       |  |
| LSSU216/60 | LSSUI35    | 61 | 216 | 89         | 43 | 1,2         | 10          | 7       |  |
| LSSU216/90 | LSSU410    | 90 | 216 | 89         | 75 | 1,2         | 18          | 12      |  |









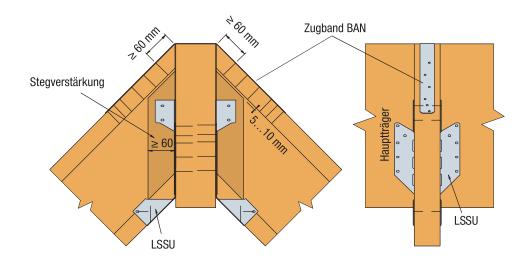


LSSU Nägel im Nebenträger

### Anwendungshinweis:

Die Verbinder dürfen nur einmal an die erforderliche Neigung oder Schräge angepasst werden. Ein mehrmaliges Biegen ist nicht zulässig.

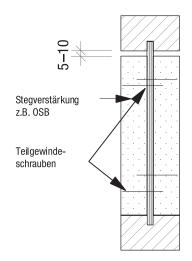
### EWP Formteile - LSSU




### Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr.   |        | Anschluss St                                  |        | tische Werte d<br>Vollholz C24, F |              |           | tegträger <sup>1)</sup> |                  |  |  |  |  |  |  |
|------------|--------|-----------------------------------------------|--------|-----------------------------------|--------------|-----------|-------------------------|------------------|--|--|--|--|--|--|
|            |        | Nagelung NT nur geneigt NT schräg und geneigt |        |                                   |              |           |                         |                  |  |  |  |  |  |  |
|            | F      | IT                                            | N      | IT                                |              |           |                         |                  |  |  |  |  |  |  |
|            | Anzahl | Тур                                           | Anzahl | Тур                               | $R_{_{1,k}}$ | $R_{2,k}$ | R <sub>1,k</sub>        | R <sub>2,k</sub> |  |  |  |  |  |  |
| LSSU216/45 | 10     |                                               | 7      |                                   | 5,1          | 2,4       | 3,5                     | 1,5              |  |  |  |  |  |  |
| LSSU216/60 | 10     | CNA3,7x50                                     | 7      | N3.75x30SH                        | 9,1          | 2,4       | 6,8                     | 4,0              |  |  |  |  |  |  |
| LSSU216/90 | 18     |                                               | 12     |                                   | 11,2         | 3,0       | 7,1                     | 2,3              |  |  |  |  |  |  |


<sup>1)</sup> Eine Stegverstärkung ist immer erforderlich (Ausführung siehe unten und Herstellerangaben für Stegträger).



### Stegverstärkungen:

Für die Stegverstärkung eignen sich kreuzweise verleimte Holzwerkstoffoder OSB Platten, die am Nebenträger auf dem Untergurt aufstehen und zum Obergurt 5-10 mm Luft haben sollen. Die Breite ist mit 2/3 der Höhe anzunehmen und die Dicke muss so gewählt werden, dass die Stegverstärkung mit der Gurtkante bündig abschließt. Die Befestigung der Stegverstärkungen muss gewährleisten, dass der Steg mit Verstärkung wie ein Querschnitt wirkt. Gemäß ETA-08/0053 beträgt die Gesamtanzahl der Verbindungsmittel in der Stegverstärkung mindestens der Anzahl der Nägel, wie vom LSSU Verbinder zum Nebenträger benötigt werden. Die Verbindungsmittel müssen von beiden Seiten übergreifend eingebracht werden. Als Verbindungsmittel eignen sich selbstbohrende, bauaufsichtlich zugelassene Spanplattenschrauben mit Senkkopf und Teilgewinde folgender Größen:

- Gurtbreite 45 mm = 5,0 x 40 mm
- Gurtbreite 60 mm = 5,0 x 50 mm
- Gurtbreite 90 mm = 5,0 x 80 mm



### Bemessungshinweise für alle EWP-Verbinder:

Die statischen Werte in den Tabellen gelten nur für die aufgeführten Verbinder mit den entsprechenden Verbindungsmitteln.

Die Bemessungswerte der Tragfähigkeit der Haupt- und Nebenträger, z.B. Auflagerpressung und Schubnachweise, sind nach den gültigen Normen oder den Zulassungen der Stegträgerhersteller zu ermitteln. Der jeweils kleinste Wert wird für die Tragfähigkeit der gesamten Verbindung maßgeblich. Angaben zu den Verbindungsmitteln sind im entsprechenden Kapitel aufgeführt.

Weitere Verbindergrößen, Infos und statische Werte finden Sie in den ETAs, auf unserer Website strongtie.de und in den Unterlagen der Stegträgerhersteller.

## EWP Formteile - IUSE





IUSE Verbinder und die Stegträger sollten idealerweise gleich hoch sein, um die Obergurte der Träger seitlich zu halten. Erreichen die Verbinder nicht die Nebenträgerhöhe, werden Stegverstärkungen im Nebenträger notwendig. Die oberseitigen Anschlaghilfen können bei tiefer liegenden Anschlüssen nach oben abgekantet werden.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz:  $275 \text{ g/m}^2$  beidseitig - entsprechend einer Zinkschichtdicke von ca.  $20 \ \mu m$ .

**Befestigung:** Der Anschluss erfolgt mit CNA4,0x50 Kammnägeln im Hauptträger und N3.75x30 Drillnägeln im Nebenträger. Die dreieckigen und ovalen Löcher werden je nach Anwendung optional ausgenagelt.

×

**PATENT** 



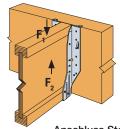




0554

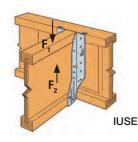
## Produktabmessungen

Tabelle 1


| Art. Nr.   |    |     | Abr | nessung [m | m] |    |     | Löcher [mm] |       |          |         |  |  |
|------------|----|-----|-----|------------|----|----|-----|-------------|-------|----------|---------|--|--|
|            |    |     |     |            |    |    |     | Haupt       | Neber | enträger |         |  |  |
|            | Α  | В   | С   | D          | E  | F  | t   | Δ 4,1       | Ø4,3  | Δ 4,1    | □ 4 x 6 |  |  |
| IUSE239/61 | 61 | 239 | 51  | 30         | 34 | 59 | 1,2 | 2           | 14    | 6        | 2       |  |  |
| IUSE239/92 | 92 | 239 | 51  | 30         | 34 | 59 | 1,2 | 2           | 14    | 6        | 2       |  |  |
| IUSE299/61 | 61 | 299 | 51  | 30         | 34 | 59 | 1,2 | 2           | 16    | 6        | 2       |  |  |
| IUSE299/92 | 92 | 299 | 51  | 30         | 34 | 59 | 1,2 | 2           | 16    | 6        | 2       |  |  |
| IUSE359/61 | 61 | 359 | 51  | 30         | 34 | 59 | 1,2 | 2           | 20    | 6        | 2       |  |  |
| IUSE359/92 | 92 | 359 | 51  | 30         | 34 | 59 | 1,2 | 2           | 20    | 6        | 2       |  |  |
| IUSE399/61 | 61 | 399 | 51  | 30         | 34 | 59 | 1,2 | 2           | 22    | 6        | 2       |  |  |
| IUSE399/92 | 92 | 399 | 51  | 30         | 34 | 59 | 1,2 | 2           | 22    | 6        | 2       |  |  |

Weitere Abmessungen auf Anfrage

### Charakteristische Werte der Tragfähigkeit


Tabelle 2

| Art. Nr.   |        | Charakteristische Werte der Tragfähigkeit [kN]<br>Anschluss Stegträger an Vollholz, Furnierschichtholz oder Stegträger <sup>1)</sup> |        |                  |                               |       |  |  |  |  |  |  |  |  |
|------------|--------|--------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|-------------------------------|-------|--|--|--|--|--|--|--|--|
|            |        | Nage                                                                                                                                 |        |                  |                               |       |  |  |  |  |  |  |  |  |
|            |        | HT                                                                                                                                   |        |                  |                               |       |  |  |  |  |  |  |  |  |
|            | Anzahl | Тур                                                                                                                                  | Anzahl | R <sub>1,k</sub> | $R_{2,k}$                     |       |  |  |  |  |  |  |  |  |
| IUSE239/61 | 14     |                                                                                                                                      |        |                  | 28,3                          |       |  |  |  |  |  |  |  |  |
| IUSE239/92 | 14     |                                                                                                                                      |        |                  | 20,3                          | - 2,0 |  |  |  |  |  |  |  |  |
| IUSE299/61 | 16     |                                                                                                                                      |        |                  | 20.0                          |       |  |  |  |  |  |  |  |  |
| IUSE299/92 | 16     | CNA 4 OVEO                                                                                                                           |        | N3.75 x 30SH     | 32,8                          |       |  |  |  |  |  |  |  |  |
| IUSE359/61 | 20     | CNA4,0x50                                                                                                                            | 2      | N3.73 X 303H     |                               |       |  |  |  |  |  |  |  |  |
| IUSE359/92 | 20     |                                                                                                                                      |        |                  | min. von:                     |       |  |  |  |  |  |  |  |  |
| IUSE399/61 | 20     |                                                                                                                                      |        |                  | 41,5; 38,8 / k <sub>mod</sub> |       |  |  |  |  |  |  |  |  |
| IUSE399/92 | 20     |                                                                                                                                      |        |                  |                               |       |  |  |  |  |  |  |  |  |



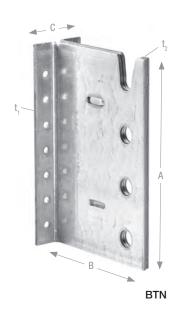
Anschluss Stegträger an Vollholz oder Holzwerkstoff.

 $<sup>^{\</sup>mbox{\tiny 1)}}$  Mit Stegverstärkung (siehe Herstellerangaben für Stegträger)



Anschluss eines Stegträgers an einen Stegträger als Hauptträger mit Stegverstärkung im Hauptträger




Bei einer Stegverstärkung am Hauptträger ist diese dicht am Obergurt anzuordnen und mit 5–10 mm Luft zum Untergurt.



N3.75 x 30 SH SH Drillnägel







Balkenträger sind sehr vielseitige und leistungsfähige Verbinder für Anschlüsse von Nebenträgern an Stützen oder Hauptträger aus Holz oder Holzwerkstoffen. Die Beanspruchung kann in alle Lastrichtungen erfolgen. Balkenträger werden im Nebenträger eingeschlitzt und sind durch die verdeckt liegende Montage sehr gut für Sichtholz- Konstruktionen, auch mit Anforderungen an den Brandschutz, geeignet. Die Ausführung in Aluminium darf neben der Edelstahlvariante in frei bewitterten Außenbereichen zum Einsatz kommen und kann für geneigte Anschlüsse zugeschnitten werden.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm. BTALU: AlMgSi0.7 Aluminium. Balkenträger sind auch in nichtrostendem Stahl erhältlich.

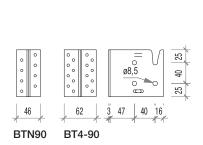
Befestigung: Der Anschluss am Hauptträger erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Für den Anschluss am Nebenträger werden je nach Balkenträgergröße Stabdübel mit Ø8 mm bzw. Ø12 mm eingesetzt. Die Länge der Stabdübel richtet sich nach der Breite der Nebenträger und den Ansprüchen an den Brandschutz. Der BTALU wird ohne Bohrungen für den Nebenträger geliefert, diese werden nach Erfordernis bauseits gebohrt. Passende Bohrschablonen für die Stabdübellöcher im Holz, erleichtern den Handabbund.

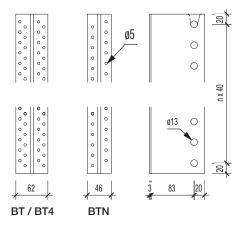


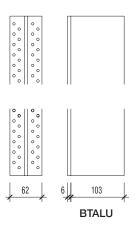


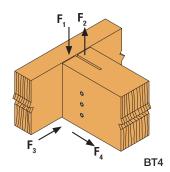


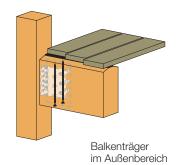















### Anwendungshinweis:

Für die Verwendung im Außenbereich, z.B. Terrassen und Balkone, dürfen Simpson Strong-Tie® Balkenträger aus nichtrostendem Stahl und BTALU gemäß ETA-07/0245 verwendet werden. Details zum Einbau und weitere Infos sind im Kapitel Rostfreie Verbinder aufgeführt.



# Produktabmessungen

Tabelle 1

| Art. Nr.              |                                                                                      | Abn                                                                          | nessung (ı | mm] |                | Mindesthöhe<br>Nebenträger h <sub>N</sub> [mm] | Löcher für | Stabdübel      | Maximal<br>Verbindung<br>Anschl | smittel bei |  |  |
|-----------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------|-----|----------------|------------------------------------------------|------------|----------------|---------------------------------|-------------|--|--|
|                       | Α                                                                                    | В                                                                            | С          | t,  | t <sub>2</sub> |                                                | Anzahl     | Ø              | Hauptträger                     | Stütze      |  |  |
| BTN90-B               | 90                                                                                   |                                                                              |            |     |                | 100                                            | 4          | 8              | 8                               | 4           |  |  |
| BTN120-B              | 120                                                                                  |                                                                              |            |     |                | 160                                            | 3          | 12             | 10                              | 6           |  |  |
| BTN160                | 160                                                                                  | 103                                                                          | 46         | 3   | 6              | 200                                            | 4          | 12             | 14                              | 8           |  |  |
| BTN200-B              | 200                                                                                  |                                                                              |            |     |                | 240                                            | 5          | 12             | 18                              | 10          |  |  |
| BTN240-B              | 240                                                                                  |                                                                              |            |     |                | 280                                            | 6          | 12             | 22                              | 12          |  |  |
| BT4-90-B              | 90                                                                                   |                                                                              |            |     |                | 100                                            | 4          | 8              | 16                              | 8           |  |  |
| BT4-120-B             | 120                                                                                  |                                                                              |            |     |                | 160                                            | 3          | 12             | 20                              | 12          |  |  |
| BT4-160-B             | 160                                                                                  | 103                                                                          | 62         | 3   | 6              | 200                                            | 4          | 12             | 28                              | 16          |  |  |
| BT4-200-B             | 200                                                                                  |                                                                              |            |     |                | 240                                            | 5          | 12             | 36                              | 20          |  |  |
| BT4-240-B             | 240                                                                                  |                                                                              |            |     |                | 280                                            | 6          | 12             | 44                              | 24          |  |  |
| BT280-B 1)            | 280                                                                                  |                                                                              |            |     |                | 320                                            | 7          | 12             | 52                              | 28          |  |  |
| BT320-B 1)            | 320                                                                                  |                                                                              |            |     | 6              | 360                                            | 8          | 12             | 60                              | 32          |  |  |
| BT360-B1)             | 360                                                                                  |                                                                              |            |     |                | 400                                            | 9          | 12             | 68                              | 36          |  |  |
| BT400-B 1)            | 400                                                                                  |                                                                              |            |     |                | 440                                            | 10         | 12             | 76                              | 40          |  |  |
| BT440-B <sup>1)</sup> | 440                                                                                  | 103                                                                          | 62         | 3   |                | 480                                            | 11         | 12             | 84                              | 44          |  |  |
| BT480-B 1)            | 480                                                                                  |                                                                              |            |     |                | 520                                            | 12         | 12             | 92                              | 48          |  |  |
| BT520-B 1)            | 520                                                                                  |                                                                              |            |     |                | 560                                            | 13         | 12             | 100                             | 52          |  |  |
| BT560-B1)             | 560                                                                                  |                                                                              |            |     |                | 600                                            | 14         | 12             | 108                             | 56          |  |  |
| BT600-B1)             | 600                                                                                  |                                                                              |            |     |                | 640                                            | 15         | 12             | 116                             | 60          |  |  |
| BTALU-90              | 89                                                                                   |                                                                              |            |     |                | 100                                            |            |                | 16                              | 8           |  |  |
| BTALU-120             | 119                                                                                  |                                                                              |            |     |                | 160                                            |            |                | 20                              | 12          |  |  |
| BTALU-160             | 159                                                                                  | 100                                                                          | 00         |     |                | 200                                            |            | ungen<br>seits | 28                              | 16          |  |  |
| BTALU-200             | 198                                                                                  | 103                                                                          | 62         | 6   | 6              | 240                                            | buu        | 00.00          | 36                              | 20          |  |  |
| BTALU-240             | 238                                                                                  |                                                                              |            |     |                | 280                                            |            |                | 44                              | 24          |  |  |
| BTALU3000             | 3000                                                                                 |                                                                              |            |     |                | Zuschnitt                                      | -          | _              | -                               | -           |  |  |
| BTBS8                 | Bohrschablone für Balkenträger 90 und div. Stützenfüße mit 8 mm Stabdübeldurchmesser |                                                                              |            |     |                |                                                |            |                |                                 |             |  |  |
| BTBS12                | Bohrsc                                                                               | Bohrschablone für Balkenträger ab 120 mm Höhe und 12 mm Stabdübeldurchmesser |            |     |                |                                                |            |                |                                 |             |  |  |

<sup>1)</sup> Balkenträger ab BT280 sind immer vierreihig

### Bohrschablonen

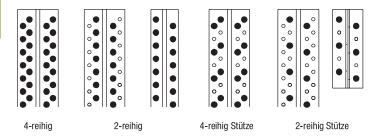
C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.







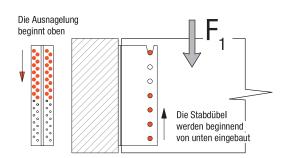
BTBS12 für Balkenträger ≥ 120 mm


BTBS8 für Balkenträger 90 und div. Stützenfüße mit Schlitzblech und 8 mm Stabdübeldurchmesser

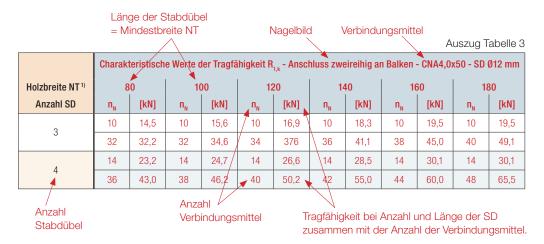


### Anwendungshinweis:

Die Anschlussmöglichkeiten mit Balkenträgern sind sehr vielfältig. Die auf den folgenden Seiten gezeigten Tragfähigkeitstabellen decken die gängigsten Einbausituationen ab. Weiterführende Angaben wie zur Befestigung mit anderen Nagellängen, CSA Schrauben, zu frei drehbar gelagerten Hauptträgern und zum Brandschutz, sind auf unserer Website **strongtie.de**, in der ETA-07/0245 und der Balkenträgerbroschüre ausführlich dargestellt.


Balkenträger können sowohl an Hauptträger als auch an Stützen aus Holz angeschlossen werden. Hierbei müssen abhängig vom Faserverlauf die Vorgaben zur Ausnagelung eingehalten werden. Generell gelten die nachfolgend gezeigten Nagelbilder.




Die Nagelbilder "Stütze" können auch für Anschlüsse an Hauptträgern verwendet werden.

Die Nachweise der Hölzer selbst sind in den Tabellen nicht berücksichtigt. Z.B. muss ein Querzugnachweis (siehe Berechnungsvoraussetzungen) für Queranschlüsse im Haupt- bzw. im Nebenträger oder bei Zuganschlüssen im Hauptträger extra geführt werden. Um einer möglichen Querzugbelastung im Haupt- und/ oder, Nebenträger entgegenzuwirken, kann es sinnvoll sein, die Balkenträger den Holzquerschnitten angepasst höher zu wählen, als für die Tragfähigkeit notwendig wäre. In diesen Fällen kann die Anzahl der Verbindungsmittel der Belastung angeglichen und der Querzugsituation entsprechend verbaut werden.

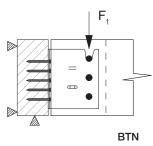
### Konstruktive Empfehlung zum Querzug



Die Werte der Tragfähigkeit lassen sich gemäß folgender Anleitung aus den Tabellen ablesen:



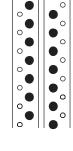
Zwischenwerte können linear interpoliert werden.


Für die Lastrichtung  $\rm F_2$  entfällt durch den oberen Schlitz in den Balkenträgern ein Stabdübel. Mit der verbleibenden Anzahl Stabdübel können die Werte aus den Tabellen für die Lastrichtung  $\rm F_1$  ermittelt werden.

# SIMPSON Strong-Tie

# Charakteristische Werte der Tragfähigkeit

Tabelle 2

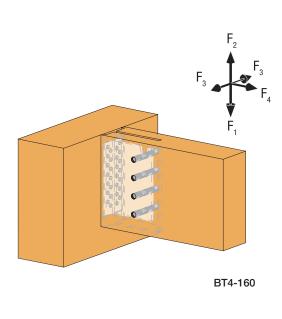

| Art. Nr.  | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub> - Anschluss mit Vollausnagelung an Balken (HT)<br>mit CNA4,0x50 unter Verwendung aller SD Ø12 mm bzw. Ø8,0 mm bei BT90 |                        |                |      |                |      |                |      |                |      |                |      |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|------|----------------|------|----------------|------|----------------|------|----------------|------|--|--|
|           | Holzbreite NT <sup>1)</sup>                                                                                                                                                       |                        |                |      |                |      |                |      |                |      |                |      |  |  |
|           | 8                                                                                                                                                                                 | 80 100 120 140 160 180 |                |      |                |      |                |      |                |      |                |      |  |  |
|           | n <sub>N</sub>                                                                                                                                                                    | [kN]                   | n <sub>N</sub> | [kN] | n <sub>N</sub> | [kN] | n <sub>N</sub> | [kN] | n <sub>N</sub> | [kN] | n <sub>N</sub> | [kN] |  |  |
| BTN90-B   | 8                                                                                                                                                                                 | 9,22)                  | 8              | 10,3 | 8              | 11,0 | 8              | 11,0 | 8              | 11,0 | 8              | 11,0 |  |  |
| BT4-90-B  | 16                                                                                                                                                                                | 11,83)                 | 16             | 12,9 | 16             | 13,7 | 16             | 13,7 | 16             | 13,7 | 16             | 13,7 |  |  |
| BTN120-B  | 10                                                                                                                                                                                | 14,5                   | 10             | 15,6 | 10             | 16,9 | 10             | 18,3 | 10             | 19,5 | 10             | 19,5 |  |  |
| BT4-120-B | 20                                                                                                                                                                                | 18,2                   | 20             | 19,4 | 20             | 20,7 | 20             | 22,3 | 20             | 23,9 | 20             | 23,9 |  |  |
| BTN160    | 14                                                                                                                                                                                | 23,2                   | 14             | 24,7 | 14             | 26,6 | 14             | 28,5 | 14             | 30,1 | 14             | 30,1 |  |  |
| BT4-160-B | 28                                                                                                                                                                                | 29,5                   | 28             | 31,2 | 28             | 33,3 | 28             | 35,7 | 28             | 38,2 | 28             | 38,5 |  |  |
| BTN200-B  | 18                                                                                                                                                                                | 32,7                   | 18             | 34,7 | 18             | 37,0 | 18             | 39,1 | 18             | 39,9 | 18             | 39,9 |  |  |
| BT4-200-B | 36                                                                                                                                                                                | 41,9                   | 36             | 44,3 | 36             | 47,2 | 36             | 50,4 | 36             | 53,9 | 36             | 54,9 |  |  |
| BTN240-B  | 22                                                                                                                                                                                | 42,6                   | 22             | 45,0 | 22             | 47,5 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 |  |  |
| BT4-240-B | 44                                                                                                                                                                                | 54,9                   | 44             | 57,9 | 44             | 61,7 | 44             | 65,9 | 44             | 70,3 | 44             | 72,3 |  |  |

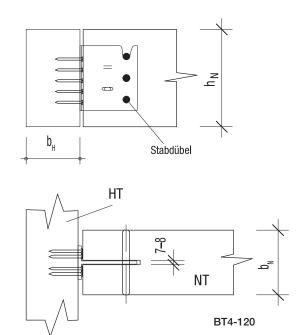


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

# Charakteristische Werte der Tragfähigkeit

|                  | Charak         | teristisch | e Werte d      | ler Tragfä | ihigkeit R     | ,,k - Anscl | hluss zw       | eireihig aı | n Balken       | - CNA4,0 | (50 - SD       | Ø12 mm |
|------------------|----------------|------------|----------------|------------|----------------|-------------|----------------|-------------|----------------|----------|----------------|--------|
| Holzbreite NT 1) | 8              | 0          | 10             | 00         | 12             | 20          | 10             | 40          | 10             | 60       | 180            |        |
| Anzahl SD        | n <sub>N</sub> | [kN]       | n <sub>N</sub> | [kN]       | n <sub>N</sub> | [kN]        | n <sub>N</sub> | [kN]        | n <sub>N</sub> | [kN]     | n <sub>N</sub> | [kN]   |
| 3                | 10             | 14,5       | 10             | 15,6       | 10             | 16,9        | 10             | 18,3        | 10             | 19,5     | 10             | 19,5   |
| 3                | 32             | 32,2       | 32             | 34,6       | 34             | 37,6        | 36             | 41,1        | 38             | 45,0     | 40             | 49,1   |
| 4                | 14             | 23,2       | 14             | 24,7       | 14             | 26,6        | 14             | 28,5        | 14             | 30,1     | 14             | 30,1   |
| 4                | 36             | 43,0       | 38             | 46,2       | 40             | 50,2        | 42             | 55,0        | 44             | 60,0     | 48             | 65,5   |
| 5                | 18             | 32,7       | 18             | 34,7       | 18             | 37,0        | 18             | 39,1        | 18             | 39,9     | 18             | 39,9   |
| 5                | 42             | 53,9       | 44             | 57,6       | 46             | 62,8        | 48             | 68,6        | 52             | 75,1     | 54             | 82,0   |
| 6                | 22             | 42,6       | 22             | 45,0       | 22             | 47,5        | 22             | 48,8        | 22             | 48,8     | 22             | 48,8   |
| 0                | 46             | 64,6       | 50             | 69,2       | 52             | 75,3        | 54             | 82,4        | 58             | 90,2     | 58             | 97,0   |
| 7                | 44             | 70,9       | 46             | 76,0       | 48             | 82,2        | 50             | 88,9        | 50             | 93,7     | 50             | 97,0   |
| ,                | 52             | 75,4       | 54             | 80,8       | 56             | 87,8        | 58             | 95,5        | 58             | 101,8    | 58             | 107,4  |
| 8                | 48             | 81,4       | 50             | 87,0       | 50             | 91,9        | 50             | 97,0        | 50             | 101,9    | 50             | 104,4  |
| 0                | 56             | 86,2       | 58             | 92,2       | 58             | 98,8        | 58             | 105,1       | 58             | 111,1    | 58             | 115,5  |
| 9                | 50             | 90,1       | 50             | 94,3       | 50             | 99,4        | 50             | 104,4       | 50             | 108,6    | 50             | 110,0  |
| J                | 58             | 96,2       | 58             | 101,3      | 58             | 107,4       | 58             | 113,6       | 58             | 119,3    | 58             | 122,7  |
| 10               | 50             | 96,9       | 50             | 101,2      | 50             | 106,1       | 50             | 110,0       | 50             | 110,8    | 50             | 110,8  |
| 10               | 58             | 104,2      | 58             | 109,2      | 58             | 115,2       | 58             | 121,1       | 58             | 126,0    | 58             | 127,8  |
| 11               | 50             | 103,2      | 50             | 107,3      | 50             | 110,6       | 50             | 110,8       | 50             | 110,8    | 50             | 110,8  |
| 11               | 58             | 111,3      | 58             | 116,4      | 58             | 122,2       | 58             | 127,1       | 58             | 128,5    | 58             | 128,5  |
| 12               | 50             | 108,6      | 50             | 110,8      | 50             | 110,8       | 50             | 110,8       | 50             | 110,8    | 50             | 110,8  |
| 12               | 58             | 118,0      | 58             | 122,8      | 58             | 127,5       | 58             | 128,5       | 58             | 128,5    | 58             | 128,5  |

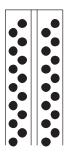




 <sup>&</sup>lt;sup>1)</sup> Holzbreite = Länge der Stabdübel; SD = Stabdübel; NT = Nebenträger; HT = Hauptträger; n<sub>N</sub> = Anzahl der Nägel im HT Bei nach oben gerichteten Lasten, müssen bei Balkenträgern mit oben offener Bohrung ein SD weniger in Ansatz gebracht werden.
 <sup>2)</sup> Bei Holzbreite des NT mit 60 mm = 8,3 kN

<sup>&</sup>lt;sup>3)</sup> Bei Holzbreite des NT mit 60 mm = 10,8 kN

<sup>&</sup>lt;sup>1)</sup> Holzbreite = Länge der Stabdübel; SD = Stabdübel; NT = Nebenträger; n<sub>N</sub> = Anzahl der Nägel im Hauptträger Bei nach oben gerichteten Lasten, müssen bei Balkenträgern mit oben offener Bohrung ein SD weniger in Ansatz gebracht werden.





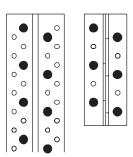



# Charakteristische Werte der Tragfähigkeit

Tabelle 4

|                  | Charak         | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub> - Anschluss vierreihig an Balken - CNA4,0x50 - SD Ø12 mm |                |       |                |       |                |       |                |       |                |       |
|------------------|----------------|---------------------------------------------------------------------------------------------------------------------|----------------|-------|----------------|-------|----------------|-------|----------------|-------|----------------|-------|
| Holzbreite NT 1) | 8              | 0                                                                                                                   | 10             | 00    | 12             | 20    | 1-             | 40    | 10             | 60    | 18             | 30    |
| Anzahl SD        | n <sub>N</sub> | [kN]                                                                                                                | n <sub>N</sub> | [kN]  | n <sub>N</sub> | [kN]  | n <sub>N</sub> | [kN]  | n <sub>N</sub> | [kN]  | n <sub>N</sub> | [kN]  |
| 3                | 20             | 18,2                                                                                                                | 20             | 19,4  | 20             | 20,7  | 20             | 22,3  | 20             | 23,9  | 20             | 23,9  |
| )<br>            | 44             | 32,2                                                                                                                | 44             | 34,5  | 48             | 37,6  | 48             | 41,2  | 52             | 45,0  | 52             | 49,1  |
| 4                | 28             | 29,5                                                                                                                | 28             | 31,2  | 28             | 33,3  | 28             | 35,7  | 28             | 38,2  | 28             | 38,5  |
| 4                | 48             | 43,0                                                                                                                | 52             | 46,1  | 56             | 50,1  | 56             | 55,0  | 60             | 60,1  | 64             | 65,5  |
| 5                | 36             | 41,9                                                                                                                | 36             | 44,3  | 36             | 47,2  | 36             | 50,4  | 36             | 53,9  | 36             | 54,9  |
| 5                | 56             | 53,9                                                                                                                | 60             | 57,6  | 60             | 62,7  | 64             | 68,7  | 68             | 75,1  | 72             | 81,9  |
| 6                | 44             | 54,9                                                                                                                | 44             | 57,9  | 44             | 61,7  | 44             | 65,9  | 44             | 70,3  | 44             | 72,3  |
| 0                | 64             | 64,6                                                                                                                | 64             | 69,2  | 68             | 75,3  | 72             | 82,4  | 76             | 90,1  | 80             | 98,3  |
| 7                | 52             | 68,0                                                                                                                | 56             | 74,4  | 60             | 82,0  | 64             | 90,3  | 68             | 99,1  | 72             | 108,3 |
| ,                | 68             | 75,4                                                                                                                | 72             | 80,7  | 76             | 87,8  | 80             | 96,1  | 84             | 105,2 | 88             | 114,7 |
| 8                | 56             | 78,5                                                                                                                | 60             | 85,5  | 64             | 93,8  | 68             | 103,0 | 72             | 112,8 | 80             | 125,7 |
| 0                | 72             | 86,2                                                                                                                | 76             | 92,3  | 80             | 100,5 | 84             | 109,9 | 88             | 120,2 | 96             | 131,2 |
| 9                | 64             | 91,6                                                                                                                | 68             | 99,0  | 72             | 108,2 | 76             | 118,4 | 80             | 129,3 | 88             | 143,0 |
| 9                | 80             | 97,0                                                                                                                | 84             | 103,8 | 88             | 113,0 | 92             | 123,6 | 96             | 135,3 | 104            | 147,6 |
| 10               | 68             | 102,2                                                                                                               | 72             | 110,3 | 76             | 120,2 | 80             | 131,4 | 88             | 145,5 | 92             | 158,0 |
| 10               | 84             | 107,8                                                                                                               | 88             | 115,4 | 92             | 125,6 | 96             | 137,4 | 104            | 150,3 | 108            | 164,0 |
| 11               | 72             | 112,9                                                                                                               | 76             | 121,5 | 80             | 132,3 | 88             | 146,6 | 92             | 159,6 | 100            | 175,4 |
| 11               | 88             | 118,6                                                                                                               | 92             | 126,9 | 96             | 138,1 | 104            | 151,2 | 108            | 165,3 | 116            | 180,4 |
| 12               | 76             | 123,6                                                                                                               | 80             | 132,9 | 88             | 146,5 | 92             | 159,7 | 100            | 175,8 | 100            | 188,1 |
| 12               | 92             | 129,3                                                                                                               | 96             | 138,4 | 104            | 150,7 | 108            | 164,9 | 116            | 180,4 | 116            | 195,8 |



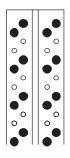

<sup>&</sup>lt;sup>1)</sup>Holzbreite = Länge der Stabdübel; SD = Stabdübel; NT = Nebenträger; n<sub>N</sub> = Anzahl der Nägel im Hauptträger Bei nach oben gerichteten Lasten, müssen bei Balkenträgern mit oben offener Bohrung ein SD weniger in Ansatz gebracht werden.

# SIMPSON Strong-Tie

# Charakteristische Werte der Tragfähigkeit

Tabelle 5

|                  |                | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub> - Anschluss zweireihig an Stütze - CNA4,0x50 - SD Ø12 mm |                |      |                |      |                |      |                |      |                |      |
|------------------|----------------|---------------------------------------------------------------------------------------------------------------------|----------------|------|----------------|------|----------------|------|----------------|------|----------------|------|
| Holzbreite NT 1) | 8              | 10                                                                                                                  | 10             | 00   | 12             | 20   | 14             | 40   | 10             | 60   | 10             | 80   |
| Anzahl SD        | n <sub>N</sub> | [kN]                                                                                                                | n <sub>N</sub> | [kN] | n <sub>N</sub> | [kN] | n <sub>N</sub> | [kN] | n <sub>N</sub> | [kN] | n <sub>N</sub> | [kN] |
| 3                | 6              | 13,0                                                                                                                | 6              | 13,3 | 6              | 13,3 | 6              | 13,3 | 6              | 13,3 | 6              | 13,3 |
| 3                | 24             | 32,2                                                                                                                | 26             | 34,5 | 26             | 37,7 | 28             | 41,1 | 30             | 45,0 | 30             | 48,7 |
| 4                | 8              | 17,7                                                                                                                | 8              | 17,7 | 8              | 17,7 | 8              | 17,7 | 8              | 17,7 | 8              | 17,7 |
| 4                | 28             | 43,0                                                                                                                | 30             | 46,1 | 30             | 49,4 | 30             | 51,8 | 30             | 53,9 | 30             | 55,3 |
| 5                | 10             | 22,2                                                                                                                | 10             | 22,2 | 10             | 22,2 | 10             | 22,2 | 10             | 22,2 | 10             | 22,2 |
| 5                | 30             | 51,5                                                                                                                | 30             | 53,3 | 30             | 55,5 | 30             | 57,7 | 30             | 59,7 | 30             | 60,6 |
| 6                | 12             | 26,6                                                                                                                | 12             | 26,6 | 12             | 26,6 | 12             | 26,6 | 12             | 26,6 | 12             | 26,6 |
| 0                | 30             | 56,6                                                                                                                | 30             | 58,4 | 30             | 60,6 | 30             | 62,8 | 30             | 64,6 | 30             | 65,0 |
| 7                | 22             | 48,6                                                                                                                | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 |
| ,                | 30             | 61,1                                                                                                                | 30             | 62,9 | 30             | 64,9 | 30             | 66,2 | 30             | 66,5 | 30             | 66,5 |
| 8                | 22             | 48,8                                                                                                                | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 |
| 0                | 30             | 64,9                                                                                                                | 30             | 66,1 | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 |
| 9                | 22             | 48,8                                                                                                                | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 |
| 9                | 30             | 66,5                                                                                                                | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 |
| 10               | 22             | 48,8                                                                                                                | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 |
| 10               | 30             | 66,5                                                                                                                | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 |
| 11               | 22             | 48,8                                                                                                                | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 |
| 11               | 30             | 66,5                                                                                                                | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 |
| 12               | 22             | 48,8                                                                                                                | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 | 22             | 48,8 |
| IΖ               | 30             | 66,5                                                                                                                | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 | 30             | 66,5 |




# Charakteristische Werte der Tragfähigkeit

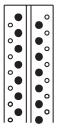
C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

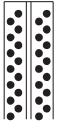
Tabelle 6

|                  | Charak         | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub> - Anschluss vierreihig an Stütze - CNA4,0x50 - SD Ø12 mm |                |       |                |       |                |       |                |       |                |       |
|------------------|----------------|---------------------------------------------------------------------------------------------------------------------|----------------|-------|----------------|-------|----------------|-------|----------------|-------|----------------|-------|
| Holzbreite NT 1) | 8              | 0                                                                                                                   | 10             | 00    | 12             | 20    | 10             | 40    | 10             | 60    | 18             | 80    |
| Anzahl SD        | n <sub>N</sub> | [kN]                                                                                                                | n <sub>N</sub> | [kN]  | n <sub>N</sub> | [kN]  | n <sub>N</sub> | [kN]  | n <sub>N</sub> | [kN]  | n <sub>N</sub> | [kN]  |
| 3                | 12             | 15,5                                                                                                                | 12             | 16,6  | 12             | 17,9  | 12             | 19,4  | 12             | 20,7  | 12             | 20,7  |
| 3                | 32             | 32,2                                                                                                                | 32             | 34,5  | 36             | 37,6  | 36             | 41,2  | 40             | 45,0  | 40             | 49,2  |
| 4                | 16             | 24,4                                                                                                                | 16             | 26,0  | 16             | 27,9  | 16             | 30,0  | 16             | 32,0  | 16             | 32,0  |
| 4                | 40             | 43,0                                                                                                                | 40             | 46,1  | 40             | 50,2  | 44             | 54,9  | 48             | 60,0  | 48             | 65,5  |
| 5                | 20             | 34,1                                                                                                                | 20             | 36,2  | 20             | 38,7  | 20             | 41,2  | 20             | 43,4  | 20             | 43,5  |
| 3                | 44             | 53,8                                                                                                                | 44             | 57,7  | 48             | 62,7  | 52             | 68,6  | 52             | 75,2  | 56             | 81,9  |
| 6                | 24             | 44,3                                                                                                                | 24             | 46,8  | 24             | 49,7  | 24             | 52,3  | 24             | 53,2  | 24             | 53,2  |
| 0                | 48             | 64,6                                                                                                                | 52             | 69,2  | 52             | 75,4  | 56             | 82,4  | 60             | 90,1  | 60             | 98,0  |
| 7                | 36             | 62,7                                                                                                                | 40             | 69,9  | 44             | 77,9  | 44             | 82,3  | 44             | 86,6  | 44             | 88,7  |
| ,                | 52             | 75,5                                                                                                                | 56             | 80,7  | 60             | 87,8  | 60             | 96,1  | 60             | 103,2 | 60             | 109,2 |
| 8                | 40             | 73,4                                                                                                                | 44             | 81,0  | 44             | 85,4  | 44             | 90,0  | 44             | 94,1  | 44             | 95,5  |
|                  | 56             | 86,2                                                                                                                | 60             | 92,2  | 60             | 99,7  | 60             | 106,6 | 60             | 112,9 | 60             | 118,0 |
| 9                | 44             | 84,0                                                                                                                | 44             | 87,9  | 44             | 92,4  | 44             | 96,3  | 44             | 97,5  | 44             | 97,5  |
|                  | 60             | 96,9                                                                                                                | 60             | 102,4 | 60             | 108,9 | 60             | 115,4 | 60             | 121,5 | 60             | 125,5 |
| 10               | 44             | 90,4                                                                                                                | 44             | 94,1  | 44             | 97,3  | 44             | 97,5  | 44             | 97,5  | 44             | 97,5  |
| 10               | 60             | 105,4                                                                                                               | 60             | 110,7 | 60             | 117,0 | 60             | 123,4 | 60             | 128,8 | 60             | 131,3 |
| 11               | 44             | 95,8                                                                                                                | 44             | 97,5  | 44             | 97,5  | 44             | 97,5  | 44             | 97,5  | 44             | 97,5  |
| - 11             | 60             | 112,9                                                                                                               | 60             | 118,2 | 60             | 124,4 | 60             | 130,0 | 60             | 133,0 | 60             | 133,0 |
| 12               | 44             | 97,5                                                                                                                | 44             | 97,5  | 44             | 97,5  | 44             | 97,5  | 44             | 97,5  | 44             | 97,5  |
| 12               | 60             | 119,8                                                                                                               | 60             | 125,0 | 60             | 130,5 | 60             | 133,0 | 60             | 133,0 | 60             | 133,0 |

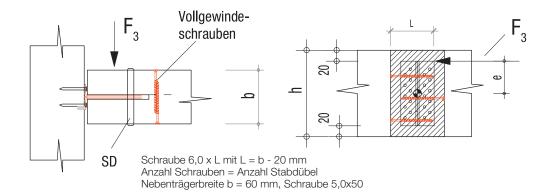


<sup>1)</sup> Holzbreite = Länge der Stabdübel; SD = Stabdübel; NT = Nebenträger; n<sub>N</sub> = Anzahl der Nägel im Hauptträger Bei nach oben gerichteten Lasten, müssen bei Balkenträgern mit oben offener Bohrung ein SD weniger in Ansatz gebracht werden.


<sup>&</sup>lt;sup>1)</sup> Holzbreite = Länge der Stabdübel; SD = Stabdübel; NT = Nebenträger; n<sub>N</sub> = Anzahl der Nägel im Hauptträger Bei nach oben gerichteten Lasten, müssen bei Balkenträgern mit oben offener Bohrung ein SD weniger in Ansatz gebracht werden.




# Charakteristische Werte der Tragfähigkeit


Tabelle 7

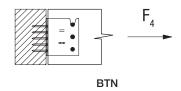
| Art. Nr.              | Chara | Charakteristische Werte der Tragfähigkeit R <sub>3,k</sub> - Anschluss an Balken mit CNA4,0x50 mit Verstärkungsschrauben <sup>1)</sup> |             |     |      |      |              |      |      |      |  |  |
|-----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|------|------|--------------|------|------|------|--|--|
|                       | Ana   | zahl                                                                                                                                   | Nebenträger |     |      | Ne   | benträgerbre | eite |      |      |  |  |
|                       | SD    | CNA                                                                                                                                    | b / h [mm]  | 60  | 80   | 100  | 120          | 140  | 160  | 180  |  |  |
| BTN90-B               | 4     | 8                                                                                                                                      | / 100       | 1,9 | 3,7  | 4,7  | 5,7          | 5,7  | 5,7  | 5,7  |  |  |
| BTN120-B              | 3     | 10                                                                                                                                     | / 160       | 2,0 | 3,1  | 4,8  | 4,8          | 4,8  | 4,8  | 4,8  |  |  |
| BTN160                | 4     | 14                                                                                                                                     | / 200       | 2,7 | 4,2  | 6,5  | 6,5          | 6,5  | 6,5  | 6,5  |  |  |
| BTN200-B              | 5     | 18                                                                                                                                     | / 240       | 3,3 | 4,7  | 7,3  | 8,3          | 8,3  | 8,3  | 8,3  |  |  |
| BTN240-B              | 6     | 22                                                                                                                                     | / 280       | 4,0 | 5,0  | 7,7  | 10,0         | 10,0 | 10,0 | 10,0 |  |  |
| BT280-B <sup>2)</sup> | 7     | 26                                                                                                                                     | / 320       | 4,6 | 5,8  | 8,1  | 11,7         | 11,8 | 11,8 | 11,8 |  |  |
| BT320-B <sup>2)</sup> | 8     | 30                                                                                                                                     | / 360       | 5,2 | 6,5  | 8,6  | 12,4         | 13,6 | 13,6 | 13,6 |  |  |
| BT360-B <sup>2)</sup> | 9     | 34                                                                                                                                     | / 400       | 5,8 | 7,2  | 9,1  | 13,0         | 15,4 | 15,4 | 15,4 |  |  |
| BT400-B <sup>2)</sup> | 10    | 38                                                                                                                                     | / 440       | 6,5 | 7,9  | 9,7  | 13,7         | 17,2 | 17,2 | 17,2 |  |  |
| BT440-B <sup>2)</sup> | 11    | 42                                                                                                                                     | / 480       | 7,2 | 8,7  | 10,6 | 14,4         | 18,8 | 19,1 | 19,1 |  |  |
| BT480-B <sup>2)</sup> | 12    | 46                                                                                                                                     | / 520       | 7,8 | 9,6  | 11,4 | 14,4         | 19,7 | 20,9 | 20,9 |  |  |
| BT520-B <sup>2)</sup> | 12    | 50                                                                                                                                     | / 560       | 8,5 | 10,4 | 12,3 | 15,2         | 20,2 | 22,7 | 22,7 |  |  |
| BT560-B <sup>2)</sup> | 12    | 54                                                                                                                                     | / 600       | 9,2 | 11,3 | 13,2 | 15,4         | 21,1 | 24,5 | 24,5 |  |  |
| BT600-B <sup>2)</sup> | 12    | 58                                                                                                                                     | / 640       | 9,8 | 12,1 | 14,1 | 16,6         | 21,5 | 26,4 | 26,4 |  |  |
| BT4-90-B              | 4     | 16                                                                                                                                     | / 100       | 1,9 | 3,7  | 4,7  | 5,8          | 6,8  | 7,8  | 8,9  |  |  |
| BT4-120-B             | 3     | 20                                                                                                                                     | / 160       | 2,2 | 3,1  | 4,8  | 6,6          | 8,3  | 10,1 | 10,5 |  |  |
| BT4-160-B             | 4     | 28                                                                                                                                     | / 200       | 2,9 | 4,7  | 7,3  | 9,9          | 12,5 | 13,7 | 13,7 |  |  |
| BT4-200-B             | 5     | 36                                                                                                                                     | / 240       | 3,5 | 5,0  | 8,1  | 13,0         | 16,7 | 17,1 | 17,1 |  |  |
| BT4-240-B             | 6     | 44                                                                                                                                     | / 280       | 4,2 | 5,4  | 8,6  | 13,7         | 19,7 | 20,5 | 20,5 |  |  |
| BT280-B               | 7     | 52                                                                                                                                     | / 320       | 4,8 | 6,1  | 9,1  | 13,7         | 21,1 | 24,0 | 24,0 |  |  |
| BT320-B               | 8     | 60                                                                                                                                     | / 360       | 5,5 | 6,8  | 9,6  | 14,4         | 21,1 | 27,6 | 27,6 |  |  |
| BT360-B               | 9     | 68                                                                                                                                     | / 400       | 6,1 | 7,6  | 9,7  | 14,5         | 21,8 | 30,0 | 31,2 |  |  |
| BT400-B               | 10    | 76                                                                                                                                     | / 440       | 6,7 | 8,3  | 10,3 | 15,2         | 22,2 | 32,0 | 34,8 |  |  |
| BT440-B               | 11    | 84                                                                                                                                     | / 480       | 7,3 | 9,1  | 11,0 | 15,2         | 22,2 | 32,0 | 38,4 |  |  |
| BT480-B               | 12    | 92                                                                                                                                     | / 520       | 7,9 | 9,8  | 11,9 | 16,1         | 23,2 | 32,0 | 41,6 |  |  |
| BT520-B               | 12    | 100                                                                                                                                    | / 560       | 8,6 | 10,6 | 12,8 | 16,1         | 23,4 | 32,0 | 44,0 |  |  |
| BT560-B               | 12    | 108                                                                                                                                    | / 600       | 9,2 | 11,3 | 13,8 | 16,9         | 23,4 | 33,6 | 45,1 |  |  |
| BT600-B               | 12    | 116                                                                                                                                    | / 640       | 9,8 | 12,1 | 14,7 | 17,6         | 24,2 | 33,6 | 46,1 |  |  |



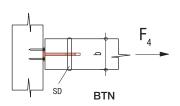






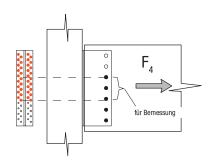

# SIMPSON Strong-Tie

# Charakteristische Werte der Tragfähigkeit


Tabelle 8

| Art. Nr.               | Charak | teristisch  | e Werte der Tr            | agfähigkeit R <sub>4,</sub> | 1) - Anschluss | an Balken voll | ausgenagelt - | SD Ø12 mm |
|------------------------|--------|-------------|---------------------------|-----------------------------|----------------|----------------|---------------|-----------|
|                        | A      | ahl         | Noboutväsor               | l                           |                |                |               |           |
|                        | SD     | zahl<br>CNA | Nebenträger<br>b / h [mm] | CNA4,0x40                   | CNA4,0x50      | CNA4,0x60      | CSA5,0x40     | CSA5,0x50 |
| BTN90-B <sup>2)</sup>  | 4      | 8           | / 100                     | 5,9                         | 7,8            | 9,8            | 14,3          | 14,3      |
| BTN120-B               | 3      | 10          | / 160                     | 7,4                         | 9,8            | 12,2           | 17,6          | 19,1      |
| BTN160                 | 4      | 14          | / 200                     | 10,3                        | 13,7           | 16,7           | 24,4          | 25,2      |
| BTN200-B               | 5      | 18          | / 240                     | 13,2                        | 17,6           | 21,2           | 31,1          | 31,2      |
| BTN240-B               | 6      | 22          | / 280                     | 16,2                        | 21,6           | 25,8           | 37,3          | 37,3      |
| BT4-90-B <sup>2)</sup> | 4      | 16          | / 100                     | 5,9                         | 7,8            | 9,8            | 14,3          | 14,3      |
| BT4-120-B              | 3      | 20          | / 160                     | 7,4                         | 9,8            | 12,2           | 17,6          | 19,1      |
| BT4-160-B              | 4      | 28          | /200                      | 10,3                        | 13,7           | 16,7           | 24,4          | 25,2      |
| BT4-200-B              | 5      | 36          | / 240                     | 13,2                        | 17,6           | 21,2           | 31,1          | 31,2      |
| BT4-240-B              | 6      | 44          | / 280                     | 16,2                        | 21,6           | 25,8           | 37,3          | 37,3      |
| BT280-B                | 7      | 52          | / 320                     | 19,1                        | 25,5           | 30,3           | 44,5          | 44,5      |
| BT320-B                | 8      | 60          | /360                      | 22,0                        | 29,4           | 34,8           | 51,2          | 56,9      |
| BT360-B                | 9      | 68          | / 400                     | 25,0                        | 33,3           | 39,3           | 57,9          | 64,0      |
| BT400-B                | 10     | 76          | / 440                     | 27,9                        | 37,2           | 43,9           | 64,6          | 71,0      |
| BT440-B                | 11     | 84          | / 480                     | 30,9                        | 41,2           | 48,4           | 71,3          | 78,1      |
| BT480-B                | 12     | 92          | / 520                     | 33,8                        | 45,1           | 52,9           | 78,0          | 85,1      |
| BT520-B                | 12     | 100         | / 560                     | 36,8                        | 49,0           | 57,4           | 84,7          | 92,2      |
| BT560-B                | 12     | 108         | /600                      | 39,7                        | 52,9           | 62,0           | 91,4          | 99,2      |
| BT600-B                | 12     | 116         | / 640                     | 42,6                        | 56,8           | 66,5           | 98,2          | 106,3     |
| BTALU-120              | 3      | 20          | / 160                     | 7,4                         | 9,8            | 12,2           | 21,8          | 30,6      |
| BTALU-160              | 4      | 28          | / 200                     | 10,3                        | 13,7           | 17,2           | 30,5          | 42,8      |
| BTALU-200              | 5      | 36          | / 240                     | 13,2                        | 17,6           | 22,0           | 39,2          | 55,1      |
| BTALU-240              | 6      | 44          | / 280                     | 16,2                        | 21,6           | 27,0           | 48,0          | 67,3      |
| BTALU-280              | 7      | 52          | / 320                     | 19,1                        | 25,5           | 31,8           | 56,7          | 79,6      |
| BTALU-320              | 8      | 60          | / 360                     | 22,0                        | 29,4           | 36,8           | 65,4          | 91,8      |
| BTALU-360              | 9      | 68          | / 400                     | 25,0                        | 33,3           | 41,6           | 74,1          | 104,0     |
| BTALU-400              | 10     | 76          | / 440                     | 27,9                        | 37,2           | 46,6           | 82,8          | 116,3     |
| BTALU-440              | 11     | 84          | / 480                     | 30,9                        | 41,2           | 51,4           | 91,6          | 128,5     |
| BTALU-480              | 12     | 92          | / 520                     | 33,8                        | 45,1           | 56,4           | 100,3         | 140,8     |
| BTALU-520              | 12     | 100         | / 560                     | 36,8                        | 49,0           | 61,2           | 109,0         | 153,0     |
| BTALU-560              | 12     | 108         | / 600                     | 39,7                        | 52,9           | 66,2           | 117,7         | 165,2     |
| BTALU-600              | 12     | 116         | / 640                     | 42,6                        | 56,8           | 71,0           | 126,4         | 177,5     |

### Seitenansicht




### Draufsicht



C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Es gilt: 
$$\left(\frac{F_{1,d}}{R_{1,d}}\right) + \left(\frac{F_{3,d}}{R_{3,d}}\right) + \left(\frac{F_{4,d}}{R_{4,d}}\right) \le 1,0$$



### Anwendungshinweis

Grundlage der Werte für die Kraftrichtung F, ist, dass die Kraft in der Mitte der Stabdübel- und in der Mitte der Nagelgruppe wirkt. Bei einer asymmetrischen Anordung der Verbindungsmittel (z.B. aufgrund von Querzug) dürfen nur die Stabdübel und Nägel die sich im Überlappungsbereich befinden zur Berechnung angesetzt werden - siehe Abbildung links.

<sup>1)</sup> Werte gelten ab 60 mm Nebenträgerbreite 2) Stabdübel Ø8 mm



### Beispiel:

Ein Nebenträger im Querschnitt 140 / 440 mm, unterkantenbündig, soll an einen Hauptträger 140 / 480 mm angeschlossen werden. Der HT liegt in einer Dachneigung von 5°. Einbau in NKL 2, KLED: mittel  $\Rightarrow$   $k_{mod} = 0.8$ 

### Maßgebende Lasten:

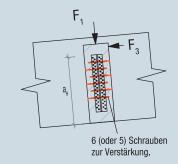
 $F_{1,d} = 32,5 \text{ kN}$  $F_{3,d} = 2,8 \text{ kN}$ 

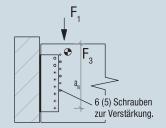
### Gewählt:

A) BT320 mit 52 CNA4,0x50 Kammnägeln und 6 Stabdübeln 12x140.

Da 44 Nägel nicht ausreichen, wurden 44 + 8 = 52 Nägel gewählt.

Zwischenwerte können linear interpoliert werden.


oder


B) BT360 mit 64 CNA4,0x50 Kammnägeln und 5 Stabdübeln 12x140

# Charakteristische Werte der Tragfähigkeit

Auszug aus Tabelle 4

|                  | 1              |                                                                                                                          |                |      |                |      |                |      |  |  |
|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------|----------------|------|----------------|------|----------------|------|--|--|
|                  |                | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub> -<br>Anschluss vierreihig an Balken mit CNA4,0x50 - SD Ø12 mm |                |      |                |      |                |      |  |  |
| Holzbreite NT 1) | 8              | 0                                                                                                                        | 10             | 00   | 12             | 20   | 140            |      |  |  |
| Anzahl SD        | n <sub>N</sub> | [kN]                                                                                                                     | n <sub>N</sub> | [kN] | n <sub>N</sub> | [kN] | n <sub>N</sub> | [kN] |  |  |
| 3                | 20             | 18,2                                                                                                                     | 20             | 19,4 | 20             | 20,7 | 20             | 22,3 |  |  |
| 3                | 44             | 32,2                                                                                                                     | 44             | 34,5 | 48             | 37,6 | 48             | 41,2 |  |  |
| 4                | 28             | 29,5                                                                                                                     | 28             | 31,2 | 28             | 33,3 | 28             | 35,7 |  |  |
| 4                | 48             | 43,0                                                                                                                     | 52             | 46,1 | 56             | 50,1 | 56             | 55,0 |  |  |
| _                | 36             | 41,9                                                                                                                     | 36             | 44,3 | 36             | 47,2 | 36             | 50,4 |  |  |
| 5                | 56             | 53,9                                                                                                                     | 60             | 57,6 | 60             | 62,7 | 64             | 68,7 |  |  |
|                  | 44             | 54,9                                                                                                                     | 44             | 57,9 | 44             | 61,7 | 44             | 65,9 |  |  |
| 6                | 64             | 64,6                                                                                                                     | 64             | 69,2 | 68             | 75,3 | 72             | 82,4 |  |  |
| 7                | 52             | 68,0                                                                                                                     | 56             | 74,4 | 60             | 82,0 | 64             | 90,3 |  |  |
| /                | 68             | 75,4                                                                                                                     | 72             | 80,7 | 76             | 87,8 | 80             | 96,1 |  |  |





### Berechnung von F<sub>1,d</sub>

A) Durch Interpolation

 $R_{1,k} = (82,4 \text{ kN} - 65,9 \text{ kN}) \times 8 \text{ Nägel} / 28 \text{ Nägel} + 65,9 \text{ kN} = 70,6 \text{ kN}$ 

 $R_{1,d} = 70,6 \times 0,8 / 1,3 = 43,5 \text{ kN}$ 

### B) Alternativauswahl

 $R_{1.k} = 68,7 \text{ kN bei } 64 \text{ n}$ 

 $R_{1,d} = 68.7 \times 0.8 / 1.3 = 42.3 \text{ kN}$ 

Ob der Anschluss mit 52 CNA + 6 SD oder mit 64 CNA + 5 SD ausgeführt wird, ist dem Planer freigestellt.



Die Anzahl der Stabdübel hat auf die Tragfähigkeit in Richtung F3 keinen direkten Einfluss, sodass die Werte auch für eine abweichende Anzahl von SD gelten. Die Tragwerte werden anhand der Nagelanzahl sowie der Ausnagelung (2-reihig / 4-reihig) ggf. durch interpolieren ermittelt. Es werden die Verstärkungsschrauben gemäß der Anzahl vorhandener Stabdübel 6 bzw. 5 festgelegt, gewählte Vollgewindeschrauben 6,0x120.

## Charakteristische Werte der Tragfähigkeit

Auszug aus Tabelle 7

| Art. Nr.  | Chara | Charakteristische Werte der Tragfähigkeit R <sub>3,k</sub> - Anschluss an Balken mit CNA4,0x50 mit Verstärkungsschrauben <sup>1)</sup> vierreihig ausgenagelt |             |     |     |      |      |      |      |      |
|-----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-----|------|------|------|------|------|
|           | Anz   | zahl                                                                                                                                                          | Nebenträger |     |     | eite |      |      |      |      |
|           | SD    | CNA                                                                                                                                                           | b / h [mm]  | 60  | 80  | 100  | 120  | 140  | 160  | 180  |
| BT4-90-B  | 4     | 16                                                                                                                                                            | / 100       | 1,9 | 3,7 | 4,7  | 5,8  | 6,8  | 7,8  | 8,9  |
| BT4-120-B | 3     | 20                                                                                                                                                            | / 160       | 2,2 | 3,1 | 4,8  | 6,6  | 8,3  | 10,1 | 10,5 |
| BT4-160-B | 4     | 28                                                                                                                                                            | / 200       | 2,9 | 4,7 | 7,3  | 9,9  | 12,5 | 13,7 | 13,7 |
| BT4-200-B | 5     | 36                                                                                                                                                            | / 240       | 3,5 | 5,0 | 8,1  | 13,0 | 16,7 | 17,1 | 17,1 |
| BT4-240-B | 6     | 44                                                                                                                                                            | / 280       | 4,2 | 5,4 | 8,6  | 13,7 | 19,7 | 20,5 | 20,5 |
| BT280-B   | 7     | 52                                                                                                                                                            | / 320       | 4,8 | 6,1 | 9,1  | 13,7 | 21,1 | 24,0 | 24,0 |
| BT320-B   | 8     | 60                                                                                                                                                            | / 360       | 5,5 | 6,8 | 9,6  | 14,4 | 21,1 | 27,6 | 27,6 |
| BT360-B   | 9     | 68                                                                                                                                                            | / 400       | 6,1 | 7,6 | 9,7  | 14,5 | 21,8 | 30,0 | 31,2 |

<sup>&</sup>lt;sup>1)</sup> Schrauben 6,0 x L mit L = b - 20 mm. Das Gewinde muss eine Länge von mindestens L-20 mm haben bei Holzbreiten von 60 mm müssen 5,0x50 Vollgewindeschrauben verwendet werden.

### Berechnung von F<sub>3,d</sub>

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

A) 
$$R_{3d} = 21.1 \times 0.8 / 1.3 = 13.0 \text{ kN}$$

### Nachweis und Überlagerung

$$\left(\frac{32,5}{43,5}\right) + \left(\frac{2,8}{13,0}\right) = 0,96 \le 1,0$$

B) 
$$R_{3d} = 21.8 \times 0.8 / 1.3 = 13.4 \text{ kN}$$

Mit beiden Varianten A und B, und den definierten

Kombinationen aus einer bestimmten Anzahl Stabdübel mit

CNA Nägeln ist der Anschluss nachweisbar.

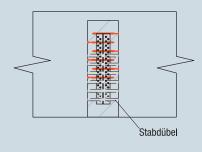
Durch die Anordnung der Nägel, Stabdübel und

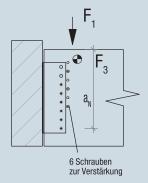
Vollgewindeschrauben gemäß ETA-07/0245 ist in

diesem Beispiel kein weiterer Querzugnachweis

erforderlich.

Andernfalls müssen Querzugnachweise gemäß EC5 geführt


werden.


Siehe auch Berechnungsvorraussetzungen.

### Nachweis und Überlagerung

$$\left(\frac{32,5}{42,3}\right) + \left(\frac{2,8}{13,4}\right) = 0.98 \le 1.0$$

### Für BT320:





Die sechs Verstärkungsschrauben werden wechselseitig eingeschraubt, etwa mittig zwischen den Stabdübelabständen und in einem Abstand zur Balkenträgerhinterkante von ~10 mm, beginnend an der Lastangriffsseite, in diesem Fall von oben.

# Balkenträger – BTC





BTC Balkenträger wurden für Anschlüsse mit Bolzen an Beton oder Stahl entwickelt und mit einem längeren Schwert ausgestattet, um den Mindestabstand der Stabdübel vor den Bolzenköpfen zu gewährleisten. Durch die verdeckt liegende Montage eignen sie sich sehr gut für Sichtholzkonstruktionen und können bei Anforderungen an den Brandschutz sicher eingesetzt werden.

Material: Stahlsorte: S250GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m $^2$  beidseitig - entsprechend einer Zinkschichtdicke von ca. 20  $\mu$ m.

**Befestigung:** Der Anschluss an Beton oder Stahl erfolgt mit Bolzen Ø12 mm. Für den Anschluss am Nebenträger werden Stabdübel mit Ø12 mm eingesetzt. Die Länge der Stabdübel richtet sich nach der Breite der Nebenträger und den Ansprüchen an den Brandschutz.



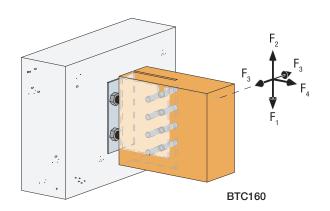


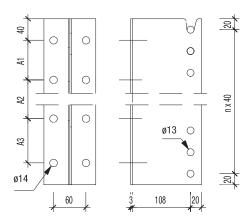
ETA-07/0245 DoP-e07/0245









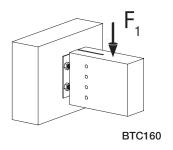

Produktabmessungen

Tabelle 1

|          |     |     |         |      |                | Tabelle                    |                     |                     |                                  |     |     |  |
|----------|-----|-----|---------|------|----------------|----------------------------|---------------------|---------------------|----------------------------------|-----|-----|--|
| Art. Nr. |     | Abm | iessung | [mm] |                | Mindesthöhe<br>Nebenträger | Löcher NT<br>Ø13 mm | Löcher HT<br>Ø14 mm | Positionen der Bolzenlöcher [mm] |     |     |  |
|          | Α   | В   | С       | t,   | t <sub>2</sub> | h <sub>N</sub> [mm]        | Anzahl              | Anzahl              | A1                               | A2  | А3  |  |
| BTC120-B | 120 |     |         |      |                | 152                        | 3                   | 2                   | _                                | _   | -   |  |
| BTC160-B | 160 |     |         |      |                | 192                        | 4                   | 4                   | 80                               | -   | -   |  |
| BTC200-B | 200 |     |         |      |                | 232                        | 5                   | 4                   | 120                              | _   | -   |  |
| BTC240-B | 240 |     |         |      |                | 272                        | 6                   | 4                   | 160                              | _   | -   |  |
| BTC280-B | 280 |     |         |      |                | 312                        | 7                   | 6                   | 100                              | 100 | -   |  |
| BTC320-B | 320 |     |         |      |                | 352                        | 8                   | 6                   | 120                              | 120 | -   |  |
| BTC360-B | 360 | 128 | 96      | 3    | 6              | 392                        | 9                   | 6                   | 140                              | 140 | -   |  |
| BTC400-B | 400 |     |         |      |                | 432                        | 10                  | 8                   | 120                              | 120 | 80  |  |
| BTC440-B | 440 |     |         |      |                | 472                        | 11                  | 8                   | 120                              | 120 | 120 |  |
| BTC480-B | 480 |     |         |      |                | 512                        | 12                  | 8                   | 120                              | 120 | 160 |  |
| BTC520-B | 520 |     |         |      |                | 552                        | 13                  | 8                   | 160                              | 160 | 120 |  |
| BTC560-B | 560 |     |         |      |                | 592                        | 14                  | 8                   | 160                              | 160 | 160 |  |
| BTC600-B | 600 |     |         |      |                | 632                        | 15                  | 8                   | 160                              | 160 | 200 |  |






# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

# Balkenträger – **BTC**

### Charakteristische Werte der Tragfähigkeit

| _  |     |    | _ |
|----|-----|----|---|
| ıа | bel | ıe | 2 |

| Breite NT <sup>1)</sup> |      | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub><br>Anschluss BTC an Beton mit Ankerbolzen - SD Ø12 mm |      |      |      |      |       |       |       |       |
|-------------------------|------|------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|-------|-------|-------|
|                         | 3 SD | 4 SD                                                                                                             | 5 SD | 6 SD | 7 SD | 8 SD | 9 SD  | 10 SD | 11 SD | 12 SD |
| 80                      | 11,5 | 18,5                                                                                                             | 26,7 | 35,8 | 45,6 | 56,0 | 66,8  | 77,9  | 89,1  | 100,5 |
| 100                     | 12,7 | 20,4                                                                                                             | 29,4 | 39,4 | 50,1 | 61,4 | 73,1  | 85,1  | 97,2  | 109,5 |
| 120                     | 14,2 | 22,8                                                                                                             | 32,7 | 43,8 | 55,6 | 68,1 | 80,9  | 94,0  | 107,3 | 120,7 |
| 140                     | 15,8 | 25,3                                                                                                             | 36,4 | 48,6 | 61,7 | 75,5 | 89,6  | 104,1 | 118,7 | 133,4 |
| 160                     | 17,2 | 27,8                                                                                                             | 40,3 | 53,8 | 68,3 | 83,4 | 99,0  | 114,8 | 130,9 | 147,0 |
| 180                     | 17,2 | 27,8                                                                                                             | 40,3 | 54,3 | 69,4 | 85,5 | 102,2 | 119,5 | 133,3 | 147,0 |



### Anwendungshinweis

Für die Lastrichtung  $\rm F_2$  entfällt durch den oberen Schlitz in den Balkenträgern ein Stabdübel. Mit der verbleibenden Anzahl Stabdübel können die Werte aus den Tabellen für die Lastrichtung  $\rm F_1$  ermittelt werden.

Die erforderliche Tragfähigkeit der Ankerbolzen wird folgendermaßen ermittelt:

$$R_{bolt,lat,d} \geq \frac{F_{1,d}}{n}$$

Für die oberen Ankerbolzen gilt außerdem:

$$R_{bolt,ax,d} \ge \frac{F_{1,d} \times 14,4}{d}$$

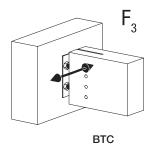
### Dabei ist

 $R_{bolt,lat,d}$  = Bemessungswert der Tragfähigkeit eines Ankerbolzens auf Abscheren  $R_{bolt,ax,d}$  = Bemessungswert der Tragfähigkeit eines Ankerbolzens auf Zug

d = Höhe des BTC -10 mm in [mm] n = Anzahl der Ankerbolzen

Der Nachweis kann sinngemäß als Bolzengruppe, wie auf der folgenden Seite beschrieben, erfolgen.

<sup>1)</sup> Mindestbreite des Nebenträgers und Länge des Stabdübels (SD)


# Balkenträger – **BTC**



# Charakteristische Werte der Tragfähigkeit

Tabelle 3

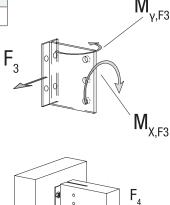
| Art. Nr. | Anz       | zahl   | Nebenträger |      |      |      |      | ragfähig<br>e (Stabdi |      |      |
|----------|-----------|--------|-------------|------|------|------|------|-----------------------|------|------|
|          | Stabdübel | Bolzen | b / h [mm]  | 60   | 80   | 100  | 120  | 140                   | 160  | 180  |
| BTC120-B | 3         | 2      | / 160       | 2,6  | 2,9  | 3,5  | 4,0  | 4,5                   | 5,2  | 5,3  |
| BTC160-B | 4         | bis 4  | /200        | 3,2  | 3,9  | 4,4  | 5,0  | 5,9                   | 6,5  | 7,0  |
| BTC200-B | 5         | bis 4  | / 240       | 4,0  | 4,9  | 5,5  | 6,3  | 7,2                   | 7,8  | 8,8  |
| BTC240-B | 6         | bis 4  | / 280       | 4,8  | 5,7  | 6,6  | 7,5  | 8,4                   | 9,1  | 10,4 |
| BTC280-B | 7         | bis 6  | /320        | 5,6  | 6,5  | 7,6  | 8,7  | 9,6                   | 10,4 | 11,9 |
| BTC320-B | 8         | bis 6  | /360        | 6,4  | 7,3  | 8,6  | 9,7  | 10,8                  | 11,8 | 13,4 |
| BTC360-B | 9         | bis 6  | / 400       | 7,2  | 8,1  | 9,5  | 10,8 | 12,0                  | 13,2 | 14,9 |
| BTC400-B | 10        | bis 8  | / 440       | 8,0  | 8,9  | 10,5 | 11,9 | 13,2                  | 14,7 | 16,4 |
| BTC440-B | 11        | bis 8  | / 480       | 8,8  | 9,7  | 11,4 | 13,0 | 14,4                  | 16,1 | 17,8 |
| BTC480-B | 12        | bis 8  | / 520       | 9,6  | 10,6 | 12,4 | 14,1 | 15,6                  | 17,6 | 19,3 |
| BTC520-B | 12        | bis 8  | / 560       | 10,4 | 11,4 | 13,3 | 15,1 | 16,8                  | 19,1 | 20,8 |
| BTC560-B | 12        | bis 8  | /600        | 11,2 | 12,3 | 14,3 | 16,2 | 18,0                  | 20,5 | 22,3 |
| BTC600-B | 12        | bis 8  | / 640       | 12,0 | 13,2 | 15,2 | 17,3 | 19,2                  | 22,0 | 23,8 |

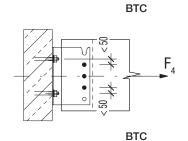


Es wird angenommen, dass die Kraft  $\mathrm{F_3}$  am oberen Ende des BTC wirkt. Für eine Kraft F<sub>3</sub> mit einem geringeren Abstand zur Mitte des BTC können die gleichen Tragfähigkeiten eingesetzt werden.

Die Bolzengruppe muss folgende Mindestwiderstände aufweisen:

 $F_{3,d}[kN]$ 


 $M_{y,F_{3,d}}^{3,d} = F_{3,d} \times 40 \text{ mm [kNmm]}$   $M_{x,F_{3,d}}^{3,d} = F_{3,d}^{3,d} \times (A/2) \text{ [kNmm]}$ 


wobei A die Höhe des BTC in [mm] angibt.



| Charakteristische      | Charakteristische Werte der Tragfähigkeit Tabelle 4 |                                                                    |  |  |  |  |  |  |  |  |  |
|------------------------|-----------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Anzahl der Ankerbolzen | Minimale Anzahl SD                                  | Charakteristische Werte<br>der Tragfähigkeit R <sub>4,k</sub> [kN] |  |  |  |  |  |  |  |  |  |
| 2                      | 3                                                   | 6,7 / k <sub>mod</sub>                                             |  |  |  |  |  |  |  |  |  |
| 4                      | 3                                                   | 13,4 / k <sub>mod</sub>                                            |  |  |  |  |  |  |  |  |  |
| 6                      | 5                                                   | 20,1 / k <sub>mod</sub>                                            |  |  |  |  |  |  |  |  |  |
| 8                      | 6                                                   | 26,8 / k <sub>mod</sub>                                            |  |  |  |  |  |  |  |  |  |





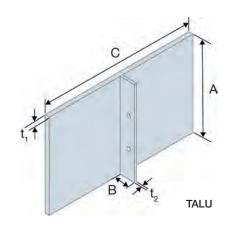


Die Kraft wirkt in der Längsachse des Nebenträgers. Die Stabdübel und Ankerbolzen sollten symmetrisch zur Mittelachse des Nebenträgers angeordnet werden, mit einem maximalen Abstand des Ankers zum Stabdübel von 50 mm. Folgende Zugtragfähigkeit der Ankerbolzen muss sichergestellt werden:

$$R_{bolt,ax,d} \ge -\frac{F_{4,d} \times 1,44}{n_b}$$

### Dabei ist:

 $R_{\text{bolt,ax,d}}$ = Bemessungswert der axialen Tragfähigkeit jedes Ankerbolzens / Bolzens


= die Anzahl der Ankerbolzen / Bolzen

F<sub>4,d</sub> = die Bemessungslast (Zug) in Längsrichtung des Nebenträgers

Die Bolzengruppe muss separat auf ihre Tragfähigkeit für die Lastkombination überprüft werden.

# T-Profile Alu – **TALU3000**





TALU3000 ist vielseitig einsetzbar und kann mit einem den Balkenträgern ähnlichem Bohrbild für gerade und schräge Anschlüsse verwendet werden.

Material: AlMgSi0.7 Aluminium.

**Befestigung:** Stabdübel mittels Bohrung gemäß separatem Nachweis. Montagefixierung mittels Schrauben/ Nägel Ø5 x  $\ell$  am Hirnholzende.

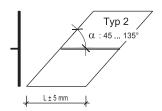


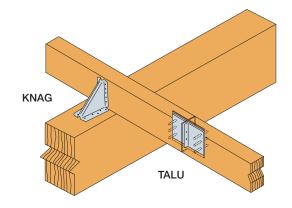


# Produktabmessungen

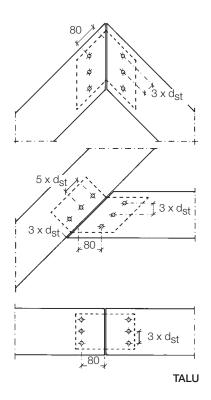
| Tabelle 1 | Т | abe | elle | 1 |
|-----------|---|-----|------|---|
|-----------|---|-----|------|---|

| Art. Nr.   | Abmessung [mm]                      |    |     |   |   |  |
|------------|-------------------------------------|----|-----|---|---|--|
|            | A B C t <sub>1</sub> t <sub>2</sub> |    |     |   |   |  |
| TALU3000-B | 3000                                | 20 | 203 | 6 | 3 |  |


Mögliche Zuschnitte auf Anfrage. Das Formular finden Sie auf unserer Website **strongtie.de** -> Leistungen -> Maßanfertigung

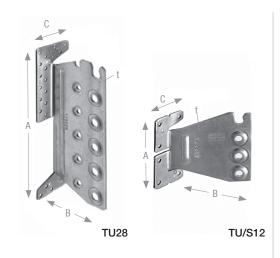

### Lieferbare Zuschnitte

203


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.








### Anwendungsmöglichkeiten



# Balkenträger - TU / TU/S





TU und TU/S Balkenträger dienen als verdeckt liegende Anschlüsse von Nebenträgern an Hauptträger oder an Stützen. Es können Anschlüsse mit Neigungen bis 45° und mit dem TUS zusätzlich Schrägen von 30° bis 85° ausgeführt werden. TUS werden nach Erfordernis ausschließlich werkseitig gekantet.

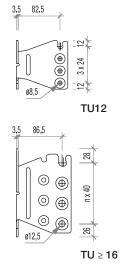
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

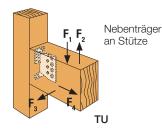
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20  $\mu m$ .

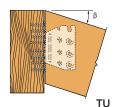
Befestigung: Der Anschluss am Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben und Stabdübeln Ø8 mm bzw. Ø12 mm.









ETA-07/0245 DoP-e07/0245


# Produktabmessungen

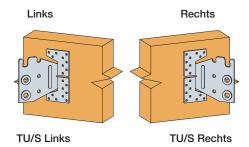
Art. Nr. Abmessung [mm] Schlitzbreite Mindesthöhe Löcher für Maximale Anzahl Nebenträger Stabdübel Verbindungsmittel Ø5 mm bei Anschluss an: В C [mm]  $h_N [mm]$ Anzahl Stütze TU12 98 40 3,5 7 120 4 8 6 6 TU16 134 160 3 12 18 14 TU20 174 200 4 12 22 14 105 60 3,5 9 TU24 214 240 5 12 26 18 TU28 254 280 6 12 30 18 TU/S12 96 98 40 120 4 6 3,5 7 8 3 TU/S16 134 160 3 12 18 9 TU/S20 174 200 4 12 22 10 105 9 60 3,5 214 240 TU/S24 5 12 26 13 TU/S28 254 280 6 12 30 14

Tabelle 1








Mögliche Neigung des Nebenträgers -45° bis +45°

F<sub>1</sub> F<sub>2</sub>

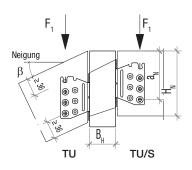
TU/S

TU/S mit Schrägstellung des Nebenträgers. Der spitze Winkel zwischen Haupt- und Nebenträger kann 30° bis 85° betragen.

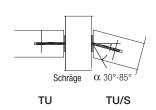
TU/S Winkelzuordnung  $30^{\circ} < \alpha < 85^{\circ}$ 



# Balkenträger – TU / TU/S


# **SIMPSON Strong-Tie**

# Charakteristische Werte der Tragfähigkeit


| Tabelle | 2 |
|---------|---|
| Tabelle | _ |

|                  | Charakteristische Werte der Tragfähigkeit, CNA4,0x50 Kammnägel<br>Vollausnagelung, Anschluss an Hauptträger<br>Stabdübellänge (wirksame Nebenträgerbreite) |         |                     |      |                              |         |                      |      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|------|------------------------------|---------|----------------------|------|
| Schräge $\alpha$ | 60                                                                                                                                                         | 80      | 100                 | 140  | 60                           | 80      | 100                  | 140  |
| 90°              |                                                                                                                                                            | Neigung | β = 0°              |      |                              | Neigung | β = 25°              |      |
| TU12             | 8,1                                                                                                                                                        | 9,0     | 10,1                | 10,7 | 8,1                          | 9,0     | 10,1                 | 10,7 |
| TU16             | 17,5                                                                                                                                                       | 18,1    | 19,2                | 22,0 | 16,6                         | 17,0    | 17,7                 | 20,0 |
| TU20             | 26,7                                                                                                                                                       | 27,6    | 29,2                | 33,3 | 25,3                         | 25,8    | 27,0                 | 30,3 |
| TU24             | 36,6                                                                                                                                                       | 37,7    | 39,8                | 45,4 | 34,8                         | 35,5    | 37,0                 | 41,4 |
| TU28             | 46,9                                                                                                                                                       | 48,3    | 50,9                | 57,6 | 44,5                         | 45,6    | 47,5                 | 52,9 |
| 45°              |                                                                                                                                                            | Neigung | $\beta = 0^{\circ}$ |      | Neigung $\beta = 25^{\circ}$ |         |                      |      |
| TU/S12           | 7,4                                                                                                                                                        | 8,2     | 9,0                 | 9,5  | 6,9                          | 7,6     | 8,3                  | 9,1  |
| TU/S16           | 16,3                                                                                                                                                       | 16,9    | 17,8                | 20,1 | 15,6                         | 15,9    | 16,5                 | 18,4 |
| TU/S20           | 24,9                                                                                                                                                       | 25,6    | 27,0                | 30,5 | 23,7                         | 24,1    | 25,1                 | 27,9 |
| TU/S24           | 34,2                                                                                                                                                       | 35,2    | 37,0                | 41,7 | 32,6                         | 33,2    | 34,5                 | 38,3 |
| TU/S28           | 44,0                                                                                                                                                       | 45,2    | 47,5                | 53,2 | 42,0                         | 42,8    | 44,5                 | 49,1 |
| 85°              |                                                                                                                                                            | Neiguno | $\beta = 0^{\circ}$ |      |                              | Neigung | $\beta = 25^{\circ}$ |      |
| TU/S12           | 7,6                                                                                                                                                        | 8,4     | 9,2                 | 9,7  | 7,1                          | 7,7     | 8,5                  | 9,3  |
| TU/S16           | 16,7                                                                                                                                                       | 17,3    | 18,3                | 20,8 | 15,9                         | 16,2    | 17,0                 | 19,0 |
| TU/S20           | 25,6                                                                                                                                                       | 26,4    | 27,8                | 31,5 | 24,3                         | 24,8    | 25,8                 | 28,8 |
| TU/S24           | 35,1                                                                                                                                                       | 36,2    | 38,1                | 42,9 | 33,5                         | 34,1    | 35,5                 | 39,4 |
| TU/S28           | 45,2                                                                                                                                                       | 46,5    | 48,8                | 54,5 | 43,0                         | 43,9    | 45,7                 | 50,5 |

### Seitenansicht



### Draufsicht



# Charakteristische Werte der Tragfähigkeit

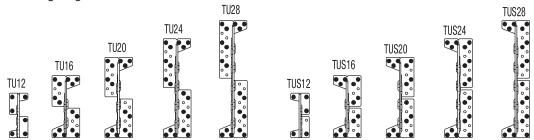
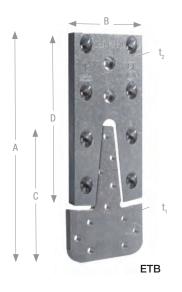

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Tabelle 3

|                  | 1                                                                                                                                                                      | <b>3 3</b> |                     |      |                              |         |         |      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------|------|------------------------------|---------|---------|------|
|                  | Charakteristische Werte der Tragfähigkeit, CNA4,0x50 Kammnägel<br>Teilausnagelung, Anschluss an Hauptträger oder Stütze<br>Stabdübellänge (wirksame Nebenträgerbreite) |            |                     |      |                              |         |         |      |
| Schräge $\alpha$ | 60                                                                                                                                                                     | 80         | 100                 | 140  | 60                           | 80      | 100     | 140  |
| 90°              |                                                                                                                                                                        | Neigung    | $\beta = 0^{\circ}$ |      |                              | Neigung | β = 25° |      |
| TU12             | 8,1                                                                                                                                                                    | 9,0        | 10,1                | 10,7 | 8,1                          | 9,0     | 10,1    | 10,7 |
| TU16             | 16,1                                                                                                                                                                   | 16,7       | 17,7                | 20,4 | 15,2                         | 15,5    | 16,3    | 18,5 |
| TU20             | 22,9                                                                                                                                                                   | 23,7       | 25,1                | 28,6 | 21,6                         | 22,1    | 23,2    | 26,1 |
| TU24             | 31,9                                                                                                                                                                   | 33,0       | 34,8                | 38,9 | 30,2                         | 30,9    | 32,3    | 36,0 |
| TU28             | 38,0                                                                                                                                                                   | 38,9       | 39,9                | 39,9 | 36,3                         | 36,9    | 38,3    | 39,9 |
| 45°              |                                                                                                                                                                        | Neigung    | β = 0°              |      | Neigung $\beta = 25^{\circ}$ |         |         |      |
| TU/S12           | 7,4                                                                                                                                                                    | 8,2        | 9,0                 | 9,5  | 6,9                          | 7,6     | 8,3     | 9,1  |
| TU/S16           | 15,0                                                                                                                                                                   | 15,5       | 16,3                | 18,5 | 14,2                         | 14,5    | 15,2    | 17,0 |
| TU/S20           | 21,3                                                                                                                                                                   | 22,0       | 23,1                | 25,8 | 20,2                         | 20,7    | 21,6    | 23,9 |
| TU/S24           | 29,5                                                                                                                                                                   | 30,4       | 32,0                | 34,4 | 28,1                         | 28,7    | 29,9    | 33,0 |
| TU/S28           | 35,3                                                                                                                                                                   | 36,1       | 36,1                | 36,1 | 33,9                         | 34,4    | 35,6    | 36,1 |
| 85°              |                                                                                                                                                                        | Neigunç    | $\beta = 0^{\circ}$ |      |                              | Neigung | β = 25° |      |
| TU/S12           | 7,6                                                                                                                                                                    | 8,4        | 9,2                 | 9,7  | 7,1                          | 7,7     | 8,5     | 9,3  |
| TU/S16           | 15,3                                                                                                                                                                   | 15,9       | 16,8                | 19,1 | 14,5                         | 14,8    | 15,5    | 17,5 |
| TU/S20           | 21,8                                                                                                                                                                   | 22,5       | 23,7                | 26,0 | 20,6                         | 21,1    | 22,0    | 24,5 |
| TU/S24           | 30,3                                                                                                                                                                   | 31,2       | 32,7                | 34,4 | 28,8                         | 29,4    | 30,6    | 33,6 |
| TU/S28           | 35,7                                                                                                                                                                   | 36,1       | 36,1                | 36,1 | 34,5                         | 35,0    | 35,9    | 36,1 |

# TU/S in einer Schifteranwendung Der Nebenträger ist schräg gestellt, bei gleichzeitiger Neigung.

# Nagelbilder Teilausnagelung/ Stützenanschluss




verdeckte Verbinder

Balkenschuhe,

## Hirnholzverbinder - ETB





ETB-Passverbinder eignen sich sowohl für Hauptträger-Nebenträgeranschlüsse als auch für Stützen-Nebenträgeranschlüsse. Sie können mit Schattenfuge oder verdeckt liegend eingebaut werden und sind in Einschubrichtung belastbar. Es können Anschlüsse mit Neigungen von -15° bis +90° und Schrägen von 15° bis 165° ausgeführt werden. Bei entsprechenden Überdeckungen ist der Verbinder für Konstruktionen mit Brandschutzanforderungen bis 30 Minuten verwendbar.

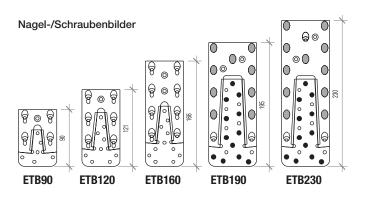
Material: Aluminium EN AW-6082 T6, gemäß EN755.

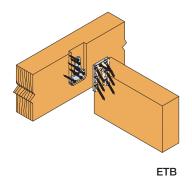
**Befestigung:** Die V-förmige Einschubplatte wird mit FTETL-5,0x80 Senkkopfschrauben am Nebenträger befestigt. Die Schrauben werden unter 45° Neigung geführt eingedreht. Die T-förmige Tragplatte wird am Hauptträger mit Kammnägeln CNA4,0xl oder Verbinderschrauben CSA5,0xl angeschlossen.










Produktabmessungen

Tabelle 1

| Art. Nr.   |         |           | Abmessı           | ıng [mm]  | Anzahl Löcher |                |                  |                        |
|------------|---------|-----------|-------------------|-----------|---------------|----------------|------------------|------------------------|
|            |         |           |                   |           |               |                | Hauptträger      | Nebenträger            |
|            | Α       | В         | С                 | D         | t,            | t <sub>2</sub> | Ø5,0             | Ø5,4                   |
| ETB90-B    | 90      | 60        | 58                | 69        | 6             | 10             | 6                | 4 + 1                  |
| ETB120-B   | 121     | 60        | 85                | 95        | 6             | 10             | 9                | 6 + 1                  |
| ETB160-B   | 166     | 60        | 95                | 130       | 6             | 10             | 11               | 8 + 2                  |
| ETB190-B   | 195     | 75        | 138               | 165       | 6             | 10             | 19               | 11 + 2                 |
| ETB230-B   | 230     | 75        | 138               | 200       | 6             | 10             | 19               | 14 + 2                 |
| MOET       | Fräs-   | und Mont  | Fräser:<br>Ø16 mm |           |               |                |                  |                        |
| ETTP90-160 | Fräs- ı | ınd Monta | ageschabl         | one aus H | 10LZ pas      | send für E     | ETB90 bis ETB160 | Kopierhülse:<br>Ø30 mm |



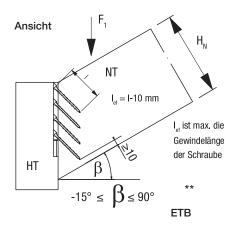


Teilausnagelung bei Stützenanschlüssen

### Anwendungshinweis:

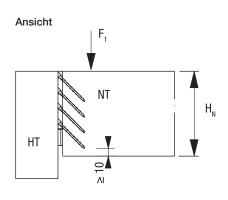
Für die Befestigung der Einschubplatte am Hirnholz sind FTETL-5,0x80 Vollgewindeschrauben vorgesehen. Werden Schrauben mit anderen Längen verwendet, wird für die Bemessung die jeweilige Gewindelänge und deren Einbindelänge im Hirnholz der Nebenträger maßgebend und muss ggf. gesondert nachgewiesen werden. Weitere Infos zu FTETL Schrauben sind im Kapitel Verbindungsmittel aufgeführt.

# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.


# Hirnholzverbinder - ETB

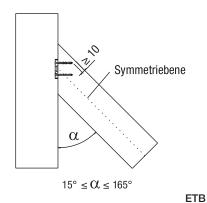
# Charakteristische Werte der Tragfähigkeit

Tabelle 2


| Art. Nr. | Verbindungsmittel<br>im Hauptträger | FTETL-Senkkopfschraube mit<br>Vollgewinde Gewindelänge<br>Ig > 60 mm im Nebenträger | Mindestabmessung des<br>Nebenträgers [mm] |      | Charakteristische Werte der<br>Tragfähigkeit [kN] R <sub>1,k</sub> je Anschluss |        |
|----------|-------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|------|---------------------------------------------------------------------------------|--------|
|          | CNA4,0x50                           | FTETL 5,0x80                                                                        | Breite                                    | Höhe | Hauptträger                                                                     | Stütze |
| ETB90-B  | 6                                   | 4                                                                                   | 70                                        | 110  | 9,6                                                                             | 9,6    |
| ETB120-B | 9                                   | 6                                                                                   | 70                                        | 145  | 13,8                                                                            | 13,8   |
| ETB160-B | 11                                  | 8                                                                                   | 70                                        | 180  | 17,8                                                                            | 17,8   |
| ETB190-B | 19 (12) <sup>1)</sup>               | 11 (9) 2)                                                                           | 90                                        | 215  | 23,8                                                                            | 19,8   |
| ETB230-B | 19 (12) <sup>1)</sup>               | 14 (11) 2)                                                                          | 90                                        | 250  | 29,5                                                                            | 21,8   |

PReduzierte Anzahl bei Anschlüssen an Stützen.
 Reduzierte Anzahl bei Anschlüssen an Stützen. Konstruktiv können alle Schraubenlöcher im NT verwendet werden (Querzug).




# Anwendungshinweis:

Für Neigungen  $\beta < 0^{\circ}$  ist die Tragfähigkeit gemäß der ETA zu ermitteln. In Abhängigkeit von den Möglichkeiten der verwendeten Schrauben kann β ggf. kleiner -15° ausgeführt werden.



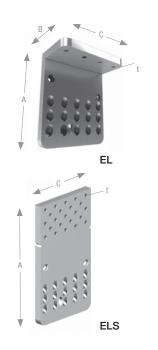
ETB

### Draufsicht



# Fräs- und Montageschablonen








Balkenschuhe,

# Hirnholzverbinder – EL / ELS





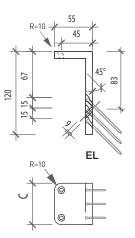
EL / ELS Hirnholzverbinder eignen sich sowohl für Hauptträger-Nebenträgeranschlüsse als auch für Stützen-Nebenträgeranschlüsse. EL Verbinder in Winkelform sind für Hauptträger aus Holz, Beton oder Stahl geeignet, während der ELS Verbinder in Laschenform für Anschlüsse an Holzstützen oder höher liegende Hauptträger gedacht ist. Es können Anschlüsse mit Neigungen von -15° bis +90° und Schrägen von 15° bis 165° ausgeführt werden. EL/ ELS Verbinder sind hauptsächlich zur vertikalen Lastabtragung geeignet. Als Verdrehsicherung und zur Aufnahme geringer abhebender Lasten, lassen sich vom Nebenträger aus, unter 45° Tellerkopfschrauben durch den Verbinder in einen Hauptträger aus Holz einbringen. Bei entsprechenden Überdeckungen ist der Verbinder für Konstruktionen mit Brandschutzanforderungen bis 30 Minuten verwendbar.

Material: Aluminium EN AW-6082 T6, gemäß EN755.

Befestigung: EL / ELS Verbinder werden mit FTETL-5,0x70 Senkkopfschrauben am Nebenträger befestigt. Die Schrauben werden unter 45° Neigung geführt eingedreht. Am Hauptträger aus Holz werden EL Verbinder ebenfalls mit Ø5 mm Senkkopfschrauben verbunden, während ELS Verbinder an der Stütze mit Kammnägeln CNA4,0xl oder Schrauben CSA5,0xl angeschlossen werden.

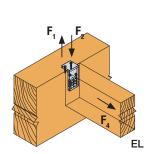


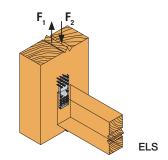




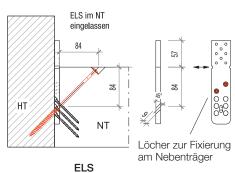






# Produktabmessungen


Tabelle 1 Art. Nr. Abmessung [mm] Anzahl Löcher Hauptträger Hauptträger Nebenträger Nebenträger Α В C t Ø5,0 Ø5,4 Ø5,4 Ø9,0 EL30-B 120 55 30 10 3 + 1EL40-B 120 55 40 10 1 6 + 21 EL60-B 10 2 9 + 2120 EL80-B 3 55 10 12 + 21 EL100-B 120 55 100 10 4 15 + 21 ELS40-B 178 40 10 8 6 + 21 ELS60-B 178 60 10 13 9 + 21 ELS80-B 178 80 10 18 12 + 21 ELS100-B 178 100 10 23 15 + 21




### Anwendungshinweis:

EL / ELS-Verbinder können für eine brandschutzgerechte oder verdeckt liegende Montage sowohl am Hauptträger, als auch am Nebenträger eingelassen werden. Querschnittsschwächungen und Montagemöglichkeiten sind dabei zu berücksichtigen.





### Seitenansicht



# Hirnholzverbinder - EL / ELS

# SIMPSON Strong-Tie

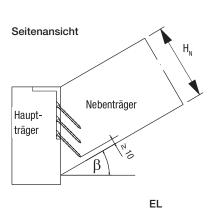
# Charakteristische Werte der Tragfähigkeit

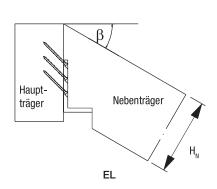
Tabelle 2

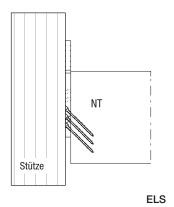
| Art. Nr. | Verbindu<br>im Haup |           | FTETL-Senkkopfschraube mit Vollgewinde Gewindelänge $I_{\rm g} > 60$ mm im Nebenträger | Mindestabmessung des<br>Nebenträgers [mm] |      | Charakteristische Werte<br>der<br>Tragfähigkeit [kN] je<br>Anschluss |
|----------|---------------------|-----------|----------------------------------------------------------------------------------------|-------------------------------------------|------|----------------------------------------------------------------------|
|          | Senkkopfschraube    | Kammnägel |                                                                                        |                                           |      | 76060                                                                |
|          | 5,0x50              | CNA4,0x50 | 5,0x70                                                                                 | Breite                                    | Höhe | $R_{t,k}$                                                            |
| EL30-B   | 1                   | _         | 3                                                                                      | 30                                        | 160  | 7,3                                                                  |
| EL40-B   | 1                   | -         | 6                                                                                      | 50                                        | 160  | 9,9                                                                  |
| EL60-B   | 2                   | _         | 9                                                                                      | 70                                        | 160  | 13,6                                                                 |
| EL80-B   | 3                   | -         | 12                                                                                     | 90                                        | 160  | 17,0                                                                 |
| EL100-B  | 4                   | -         | 15                                                                                     | 110                                       | 160  | 20,4                                                                 |
| ELS40-B  | _                   | 8         | 6                                                                                      | 50                                        | 160  | 13,5                                                                 |
| ELS60-B  | _                   | 13        | 9                                                                                      | 70                                        | 160  | 19,5                                                                 |
| ELS80-B  | _                   | 18        | 12                                                                                     | 90                                        | 160  | 25,3                                                                 |
| ELS100-B | _                   | 23        | 15                                                                                     | 110                                       | 160  | 30,9                                                                 |

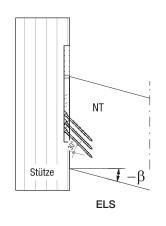
### Anwendungshinweis:

Mit dem EL Topverbinder können bedingt Kräfte in Achsrichtung des Nebenträgers aufgenommen werden.

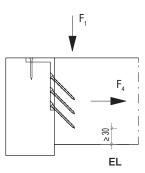

$$R_{4,d} = min. \begin{cases} n_H \times R_{lat,d} \\ 0.3 \times F_{1,d} \end{cases}$$

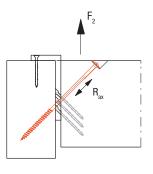

F<sub>1,d</sub> = wirkende Bemessungskraft (Querkraft) im Nebenträger


n<sub>H</sub> = Anzahl der Schrauben im Hauptträger


R<sub>lat d</sub> = Abscherkraft der Schrauben im Hauptträger

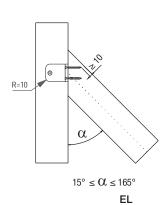
Weitere Infos zu FTETL Schrauben sind im Kapitel Verbindungsmittel aufgeführt.



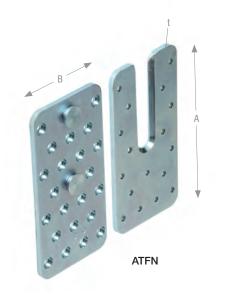






### Seitenansicht






Tellerkopfschraube bei abhebenden Lasten

### Draufsicht



### Hirnholzverbinder – **ATFN**





ATFN sind zweiteilige Verbinder aus Stahlblech, die für eine Montage mit Schattenfuge, oder ganz verdeckt liegend, gleichermaßen gut geeignet sind. Der Verbinder darf in drei Lastrichtungen beansprucht werden und ist für Anschlüsse mit Neigungen von 35° bis 145° und Schrägen von 25° bis 155° zugelassen. Bei entsprechender Berechnung, darf der Verbinder für drehbar gelagerte Hauptträger verwendet werden. ATFN eignen sich sowohl für Anschlüsse von Nebenträgern an Hauptträger als auch an Stützen.

Material: S355MC gemäß EN10149-2.

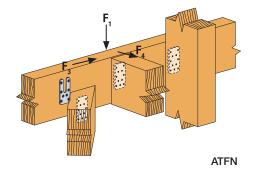
Korrosionsschutz: FE/ZN12A oder FE/ZNB gemäß EN2081

**Befestigung:** Der Anschluss erfolgt im Hauptträger und im Nebenträger mit CSA5,0x50-DECP oder CSA5,0x80-DE Schrauben. Bei Anschlüssen mit torsionssteif gelagerten Hauptträgern dürfen nur im Hauptträger anstelle der CSA Schrauben, CNA4,0x60 Kammnägel verwendet werden. Im Hirnholz der Nebenträger sind stets CSA Schrauben zu verwenden.



### Produktabmessungen

Tabelle 1


| Art. Nr.                 | Abmessung [mm] |           | Anzahl    | Anzahl Löcher  |              | messungen<br>rägers [mm] |              |
|--------------------------|----------------|-----------|-----------|----------------|--------------|--------------------------|--------------|
|                          |                |           |           | Hauptträger    | Nebenträger  |                          |              |
|                          | Α              | В         | t         | Ø5,0           | Ø5,0         | Breite                   | Höhe         |
| ATFN55/110 1)            | 110            | 55        | (2x) 5    | 8              | 11           | 80                       | 140          |
| ATFN55/150 1)            | 150            | 55        | (2x) 5    | 11             | 15           | 80                       | 180          |
| ATFN55/190 <sup>1)</sup> | 190            | 55        | (2x) 5    | 14             | 21           | 80                       | 220          |
| ATFN75/150 1)            | 150            | 75        | (2x) 5    | 17             | 22           | 100                      | 180          |
| ATFN75/190 1)            | 190            | 75        | (2x) 5    | 21             | 28           | 100                      | 220          |
| MOATF55                  | М              | ontagescl | hablone a | us HOLZ passen | d für ATFN55 |                          |              |
| MOATF75                  | М              | ontagescl | hablone a | us HOLZ passen | d für ATFN75 |                          |              |
| FRATF55                  | Fr             | ässchabl  | one aus H | Frä<br>Ø20     | ser:<br>) mm |                          |              |
| FRATF75                  | Fr             | ässchabl  | one aus F | OLZ passend fü | ATFN75       |                          | hülse:<br>mm |

<sup>1)</sup> ATFN ersetzt ATF

### Fräs- und Montageschablonen







FRATE

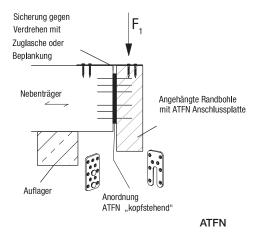
# Hirnholzverbinder - ATFN

### Charakteristische Werte der Tragfähigkeit

| Art. Nr.   | Anzahl Verbi   | ndungsmittel   | der Tragfähi        | tische Werte<br>gkeit [kN] je<br>hluss |
|------------|----------------|----------------|---------------------|----------------------------------------|
|            | Hauptträger    | Nebenträger    |                     |                                        |
|            | CSA5,0x50-DECP | CSA5,0x50-DECP | R <sub>1,k</sub> 1) | R <sub>1,k</sub> <sup>2)</sup>         |
| ATFN55/110 | 8              | 11             | 11,4                | 8,1                                    |
| ATFN55/150 | 11             | 15             | 15,5                | 12,4                                   |
| ATFN55/190 | 14             | 21             | 21,7                | 18,1                                   |
| ATFN75/150 | 17             | 22             | 22,8                | 17,4                                   |
| ATFN75/190 | 21             | 28             | 29,0                | 24,2                                   |

<sup>1)</sup> Hauptträger ist torsionssteif gelagert

### Anwendungshinweis:


Die Einbaufeuchte der Hölzer muss ≤ 18 % betragen.

# Bemessung von $\boldsymbol{R}_{3,d}$ und $\boldsymbol{R}_{4,d}$

$$R_{3,d} = 0.5 \times R_{1,d}$$
  
 $R_{4,d} = 0.25 \times R_{1,d}$ 

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Es gilt: 
$$\left(\frac{F_{1,d}}{R_{1,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 + \left(\frac{F_{4,d}}{R_{4,d}}\right)^2 \le 1,0$$



### Beispiel:

Anschluss eines Nebenträgers 120 x 240 mm an einen torsionssteif gelagerten Hauptträger, einachsig belastet. Gewählter Verbinder ATFN75/190 mit 21 + 28 CSA5,0x50-DECP Schrauben.

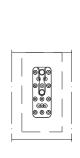
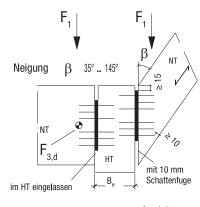
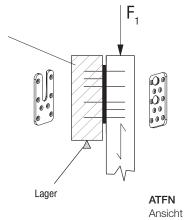
Einbau im beheizten Innenbereich NKL1, KLED: mittel  $\Rightarrow$   $k_{mod} = 0.8$ 

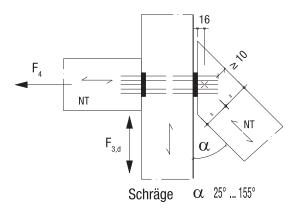
### Belastung:

$$F_{1,d} = 16,2 \text{ kN}$$

$$R_{1.d} = 29.0 \times 0.8 / 1.3 = 17.8 \text{ kN}$$

**Nachweis:** 
$$\frac{16,2}{17,8} = 0.91 \le 1.0$$



Tabelle 2



Ansicht

Randholz mit HT-Platte. Der Balken ist torsionssteif zu lagern





ATFN Draufsicht

<sup>&</sup>lt;sup>2)</sup> Hauptträger ist drehbar gelagert

# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

### Elementverbinder - ICST



**Z275** 20 μm

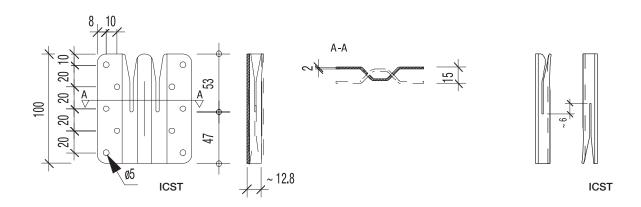


ICST Elementverbinder bestehen aus zwei gleichen Teilen, die an den Stoßflächen der zu verbindenden Elemente angeschraubt bzw. angenagelt werden. Es ist an nur einem Element eine Aussparung von 15 mm Tiefe erforderlich, bei einer 15 mm dicken Beplankung ist lediglich ein Ausschnitt an entsprechender Stelle nötig.

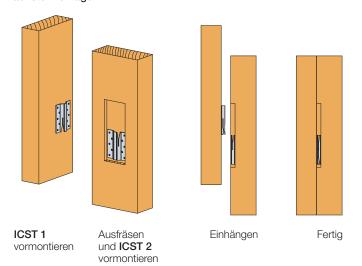
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm

**Befestigung:** Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.



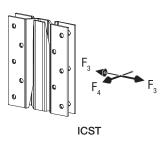

# Produktabmessungen


Tabelle 1

| Art. Nr. |    | Abmessi | Löcher Ø5 mm |   |    |
|----------|----|---------|--------------|---|----|
|          | Α  | В       | ICST         |   |    |
| ICST     | 78 | 100     | 15           | 2 | 10 |

Je zwei ICST Verbinder werden als Satz verwendet.

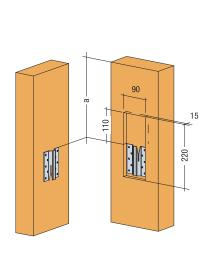


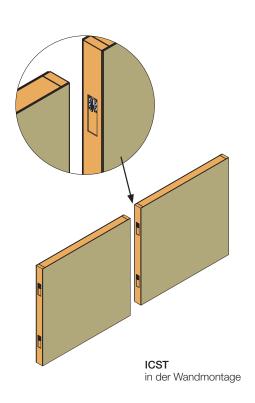

### Einfachste Montage



Elementverbinder - ICST

# Charakteristische Werte der Tragfähigkeit


| Charakteris | stische Wer       | ähigkeit     | Tabelle 2                                  |                                                |
|-------------|-------------------|--------------|--------------------------------------------|------------------------------------------------|
| Art. Nr.    | Verbindungsmittel |              |                                            | tische Werte<br>gkeit [kN] für<br>dersatz ICST |
|             | Anzahl            | Тур          | R <sub>3,k</sub>                           | R <sub>4,k</sub>                               |
| ICST        | 20                | CNA4,0x50    | 14,9                                       | 3,9                                            |
| ICST        | 20                | 20 CNA4,0x60 |                                            | 4,9                                            |
| ICST        | 20                | CSA5,0x50    | min. von:<br>17,7; 16,9 / k <sub>mod</sub> | 5,35 / k <sub>mod</sub>                        |
| ICST        | 20                | CSA5,0x80-DE | min. von:<br>23,5; 16,9 / k <sub>mod</sub> | 5,35 / k <sub>mod</sub>                        |




### Anwendungshinweis:

Für die Verbindung von Holzelementen, z.B. Wandtafeln, werden in der Regel mehrere Elementverbinder verbaut.

Die Einzelteile werden jeweils im selben Abstand zu einem Referenzpunkt montiert, damit sie bei der Montage kraftschlüssig ineinandergreifen.











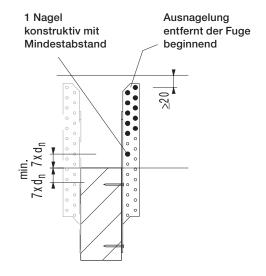
# Universalverbinder, Sparrenpfettenanker

| Allgemeines               | 142     |
|---------------------------|---------|
| Firstlattenhalter – TOL   | 143     |
| Universalverbinder – UNI  | 144-145 |
| Sparrenpfettenanker – SPF | 146-147 |
| Pfettenanker – PFE        | 148-149 |
| Pfettenanker – PFU        | 150-151 |
| Dachlattenverbinder – DLV | 152-153 |

# SIMPSON Strong-Tie

### Anwendung:

Universalverbinder und Sparrenpfettenanker werden hauptsächlich für sich kreuzende Holz/Holzanschlüsse wie beispielsweise Sparren/Pfettenverbindungen oder Kehlbalken/Pfettenanschlüsse verwendet.

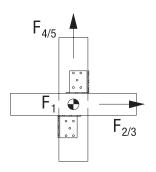

Bei der Auswahl der Verbinder muss darauf geachtet werden, dass diese möglichst lang gewählt werden, um Querzugspannungen konstruktiv entgegenzuwirken. Aus demselben Grund wird bei teilweiser Ausnagelung empfohlen die relevante Ausnagelung am Verbinderende zu beginnen und konstruktiv einen Nagel mit dem Mindestabstand nahe der Fuge zu platzieren. (Siehe auch Kapitel Einführung + Berechnungsvoraussetzungen).

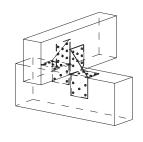
Die Tragfähigkeitswerte in diesem Katalog sind für zwei diagonal gegenüberliegende Verbinder dargestellt und dürfen bei Verwendung von vier Verbindern verdoppelt werden.

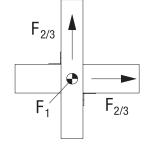
Tragfähigkeitswerte für einen Verbinder je Anschluss können der ETA-21/0482 entnommen werden.

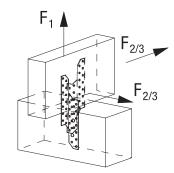
### Anwendungshinweis:

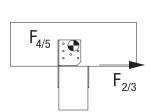
Zur Vermeidung von unzulässigen Querzugspannungen wird folgende Ausnagelung empfohlen:

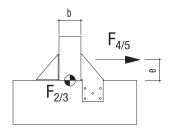




### Anwendungshinweis Universalverbinder UNI:


Die Lastrichtungen für die Universalverbinder UNI sind mit  $F_1$ ;  $F_{2/3}$  und  $F_{4/5}$  definiert. Für die Lastrichtung  $F_{4/5}$  ist die Lastangriffshöhe "e" zu berücksichtigen.

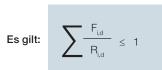

### Anwendungshinweis Pfettenanker SPF; PFE; PFU:


Die Lastrichtungen für die Sparrenpfettenanker sind mit  $F_1$  und  $F_{2/3}$  definiert. Für die Lastrichtung  $F_{2/3}$  wird von einer Lastangriffshöhe mit 20 mm Abstand von der Fuge ausgegangen.












### Kombinierte Belastung:

Die Nachweise für Lastüberlagerungen sind ausschließlich mit Bemessungswerten zu führen.



# Firstlattenhalter - TOL



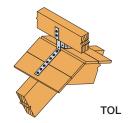
TOL40 und TOL50 Firstlattenhalter werden für die Befestigung von Firstlatten auf den Sparrenoberkanten oder einer Schalung verwendet und sind für Firstlattenbreiten mit 40 oder 50 mm geeignet.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz:  $275~{\rm g/m^2}$  beidseitig, entspricht einer Zinkschichtdicke von ca.  $20~{\rm \mu m}$ .

**Befestigung:** Die Befestigung erfolgt mit CNA4,0xℓ Kammnägeln oder CSA5,0xℓ Verbinderschrauben. Die Befestigung der Firstlatten sollte mit CSA5,0xℓ Verbinderschrauben erfolgen.






# Produktabmessungen

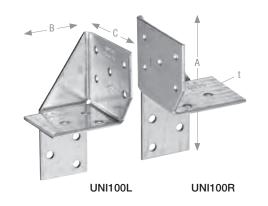

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Tabelle 1

| Art. Nr. | Abmessung [mm] |    |    |    |    |     | Löcher |            |
|----------|----------------|----|----|----|----|-----|--------|------------|
|          | Α              | В  | С  | D  | Е  | t   | Ø      | Anzahl     |
| TOL40-B  | 253            | 57 | 40 | 20 | 23 | 1,5 | 5      | 2 + 2 + 16 |
| TOL50-B  | 248            | 57 | 51 | 20 | 23 | 1,5 | 5      | 2 + 2 + 16 |







UNI Verbinder werden für Holz/Holz-Anschlüsse verwendet. Je Anschluss sollten zwei Verbinder diagonal gegenüberliegend angeordnet werden. Bei dieser Anordnung der Verbinder je Anschluss werden entweder 2 linke oder 2 rechte Verbinder benötigt.

Material: Stahlsorte: S250GD + Z275 gemäß DIN EN10346.

 $\textbf{Korrosionsschutz:}\ 275\ g/m^2\ beidseitig\ -\ entsprechend\ einer\ Zinkschichtdicke$ 

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.



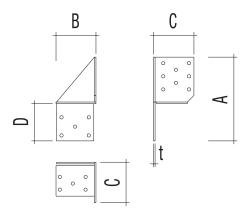


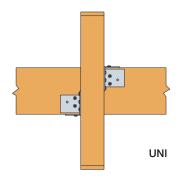









ETA-21/0482 DoP-e21/0482


Einige Typen

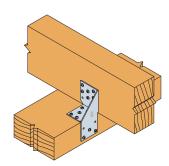
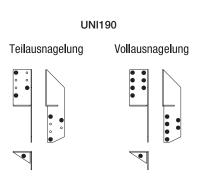

Produktabmessungen

Tabelle 1

| Art. Nr.           | Abmessung [mm] |      |      |      |     | Löcher |           |  |
|--------------------|----------------|------|------|------|-----|--------|-----------|--|
|                    | А              | В    | С    | D    | t   | Ø      | Anzahl    |  |
| UNI96L<br>UNI96R   | 96             | 34,0 | 35,0 | 46,0 | 2,0 | 4      | 3+3+2     |  |
| UNI100L<br>UNI100R | 100            | 52,5 | 62,5 | 47,5 | 2,5 | 5      | 5+3+3     |  |
| UNI130L<br>UNI130R | 130            | 62,5 | 62,5 | 58,0 | 2,5 | 5      | 8 + 5 + 5 |  |
| UNI190L<br>UNI190R | 192            | 49,5 | 49,5 | 96,0 | 2,0 | 5      | 7 + 5 + 1 |  |

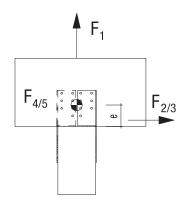


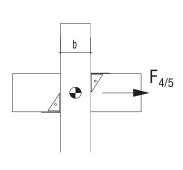





# Universalverbinder – **UNI**

# Charakteristische Werte der Tragfähigkeit


Tabelle 1


| Art. Nr. |         | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Verbinder, diagonal angebracht |                 |                  |                     |     |                                             |
|----------|---------|------------------------------------------------------------------------------------|-----------------|------------------|---------------------|-----|---------------------------------------------|
| Links    | Rechts  | Verbindungsmittel                                                                  |                 | R <sub>1,k</sub> | $R_{2,k} = R_{3,k}$ |     | $R_{4,k} = R_{5,k}$                         |
| UNI96L   | UNI96R  | CNA3,1x40 / CSA4,0x30                                                              |                 | 3,4              | 1,9                 | 3,9 | Minimum von $\frac{2,2 \times (b + 10)}{e}$ |
| UNI100L  | UNI100R | CNA4,0x40                                                                          |                 | 5,8              | 4,7                 | 7,3 | Minimum von<br>2,9 x (b + 16)<br>e          |
| UNI130L  | UNI130R | CNA4,0x40                                                                          |                 | 10,8             | 7,9                 | 7,9 | Minimum von $\frac{5.4 \times (b + 21)}{e}$ |
| UNI190L  | UNI190R | CNA4,0x40                                                                          | Teilausnagelung | 7,9              | 4,5                 | 4,3 | Minimum von<br>3,9 x (b + 7)<br>e           |
| UNITOL   | UNITEDA | GIVA4,UX4U                                                                         | Vollausnagelung | 16,0             | 5,4                 | 5,8 | Minimum von<br>7,4 x (b + 7)<br>e           |



b und e sind in [mm] einzusetzen

# F<sub>4/5</sub>



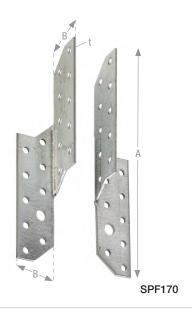


#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Pfette 80/180 an Binder, gewählter Verbinder: 2 Stück UNI190R; Vollausnagelung CNA4,0x40 Kammnägeln Belastung:  $F_{1,d} = 5.8$  kN;  $F_{4,d} = 1.0$  kN mit e = 150 mm; NKL.2; KLED: kurz  $\Rightarrow$   $k_{mod} = 0.9$ 

 $R_{1,d} = 16.0 \times 0.9 / 1.3 = 11.1 \text{ kN}$ 


 $R_{4,d} = \left\{ \begin{array}{l} 5.8 \times 0.9 \ / \ 1.3 = 4.0 \ kN \Rightarrow \text{nicht maßgebend} \\ 7.4 \times (80 + 7) \ / \ 150 \times 0.9 \ / \ 1.3 = 3.0 \ kN \end{array} \right.$ 

**Nachweis:**  $\frac{5.8}{11.1} + \frac{1.0}{3.0} = 0.86 < 1 \Rightarrow Ok$ 

Der Querzugnachweis ist gesondert zu führen. (Siehe Einführung + Berechnungsvoraussetzungen)

### Sparrenpfettenanker - SPF





SPF Sparrenpfettenanker werden für die Zugverankerung von sich kreuzenden Hölzern verwendet. Neben Zugkräften können horizontale Kräfte aufgenommen werden. Belastungsabhängig kommen 2 oder 4 Pfettenanker pro Anschluss zur Anwendung. Bei Verwendung von zwei Sparrenpfettenankern sollten diese zur zentrischen Lasteinleitung diagonal gegenüberliegend angeordnet werden.

Material: Stahlsorte: S250GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. An Stahl oder Beton erfolgt die Befestigung mit Bolzen

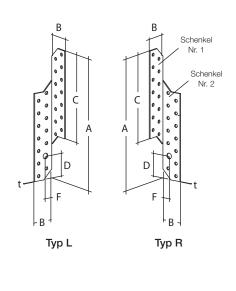




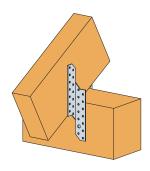


Größen

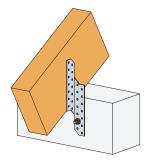




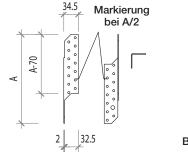


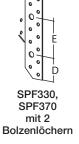


Produktabmessungen

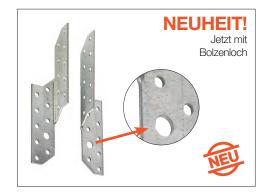
Art. Nr. Anzahl der Löcher Abmessung [mm] im Schenkel Nr. 1 Nr. 2 Nr. 2 Links Rechts В C D Ε Ø5 mm Ø 5 mm Ø 9 mm SPF170L SPF170R 170 32,5 100 37,5 14 2,0 10 SPF210L SPF210R 210 32,5 13 1 140 37,5 14 2,0 14 SPF250R SPF250L 250 32,5 180 37,5 14 2,0 18 17 1 SPF290L SPF290R 290 32,5 220 37,5 14 2,0 22 21 1 SPF330L SPF330R 330 32,5 260 40 60 2,0 26 24 2 14 SPF370L SPF370R 370 32,5 300 40 60 14 2,0 30 28 2 SPF170LR 1) 170 32.5 100 37.5 9 1 14 2.0 10 13 SPF210LR 1) 210 32,5 140 37,5 14 2,0 14 1


Tabelle 1




<sup>1)</sup> Artikelnummer für satzweise (rechts + links) Sortierung der SPF.





Holz/Holz-Anschluss



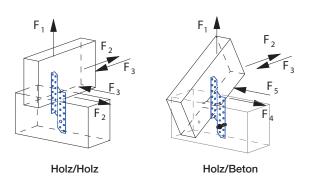
Holz/Beton-Anschluss







# Sparrenpfettenanker - SPF



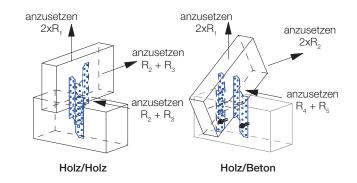


#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Sparren-        | Ve                                  | erbindungsmit                   | tel                   |                                                        |                           | Chara                                                                | kteristis | che Wert                 | e der Tra | gfähigke                       | it [kN] |                          |           |                  |
|-----------------|-------------------------------------|---------------------------------|-----------------------|--------------------------------------------------------|---------------------------|----------------------------------------------------------------------|-----------|--------------------------|-----------|--------------------------------|---------|--------------------------|-----------|------------------|
| pfettenanker    | Holz/Holz<br>CNA4,0x40<br>Kammnägel | Holz/<br>CNA4,0x40<br>Kammnägel | Ankerbolzen<br>Ø 8 mm | Tragwerte für 2 Verbinder<br>je Anschluss<br>Holz/Holz |                           | Tragwerte für 1 Verbinder<br>je Anschluss <sup>n</sup><br>Holz/Beton |           |                          |           |                                |         |                          |           |                  |
|                 |                                     | zahl im Schen                   |                       |                                                        | R <sub>1,k</sub><br>. von | R <sub>2,k</sub> + R <sub>3,k</sub><br>min. von                      |           | 1,k<br>. <b>von</b>      | R<br>min. | 2,k                            | 1       | 3,k<br>. <b>VON</b>      | $R_{4,k}$ | R <sub>5,k</sub> |
| SPF170 - SPF370 | 4                                   | 4                               | 1                     | 8,6                                                    | 12,0<br>k <sub>mod</sub>  | 2,8                                                                  | 4,3       |                          | 2,2       |                                | 1,4     |                          | 1,7       | -                |
| SPF170 - SPF370 | 5                                   | 5                               | 1                     | 11,6                                                   | 12,0<br>k <sub>mod</sub>  | 3,7                                                                  | 5,8       |                          | 2,5       |                                | 1,6     |                          | 1,7       | -                |
| SPF210 - SPF370 | 7                                   | 7                               | 1                     | 19,5                                                   | 16,8<br>k <sub>mod</sub>  |                                                                      | 9,7       | 6,0<br>k <sub>mod</sub>  | 3,8       |                                | 2,3     |                          | 1,4       | 0,5              |
| SPF250 - SPF370 | 9                                   | 9                               | 1                     | 27,6                                                   | 21,6<br>k <sub>mod</sub>  |                                                                      | 13,8      |                          | 5,3       | <u>2,6</u><br>k <sub>mod</sub> | 2,8     | 0,93<br>k <sub>mod</sub> | 1,2       | 0,9              |
| SPF290 - SPF370 | 11                                  | 11                              | 1                     | 35,7                                                   | 26,4<br>k <sub>mod</sub>  | 4,8                                                                  | 17,8      |                          | 6,6       |                                | 3,3     |                          | 1,0       | 1,1              |
| SPF330 - SPF370 | 13                                  | 13                              | 2                     | 43,7                                                   | 26,8<br>k <sub>mod</sub>  |                                                                      | 21,8      | 12,0<br>k <sub>mod</sub> | 8,0       |                                | 3,9     |                          | 0,9       | 1,2              |
| SPF370          | 15                                  | 15                              | 2                     |                                                        | 5 <u>,8</u>               |                                                                      | 25,8      | 12,0<br>k <sub>mod</sub> | 9,4       |                                | 4,4     |                          | 0,8       | 1,3              |

<sup>&</sup>lt;sup>1)</sup> Die Tragfähigkeiten sind für einen SPF Anker angegeben, bei dem Haupträger und Pfette drehsteif gelagert sind. Die Tragfähigkeit für Anschlüsse mit 2 SPF ist die Summe der einzelnen Tragfähigkeiten gemäß der unten dargestellten Lastbilder.





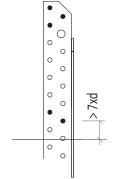
#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Pfette 80/180 an Binder, gewählter Verbinder: 2 Stück SPF330; mit je 11 CNA4,0x40 Kammnägeln

**Belastung:**  $F_{1,d} = 8.2 \text{ kN}$ ;  $F_{3,d} = 1.8 \text{ kN}$ ; NKL.2; KLED:  $kurz \Rightarrow k_{mod} = 0.9$ 

$$R_{1,d} = \frac{35,7 \times 0.9 / 1,3 = 24,7 \text{ kN} \Rightarrow \text{nicht maßgebend}}{22,0 / 0.9 \times 0.9 / 1,3 = 16,9 \text{ kN}}$$


$$R_{3,d} = 5.2 / 0.9^{0.7} \times 0.9 / 1.3 = 3.9 \text{ kN}$$

**Nachweis:** 
$$\frac{8,2}{16,9} + \frac{1,8}{3,9} = 0,95 < 1 \Rightarrow Ok$$

Es wird empfohlen, die Nägel an den Enden anzuordnen.

#### Anwendungshinweis:


Zur Reduzierung von Querzugspannungen bei einer Teilausnagelung, 2 Nägel mit Mindestabstand (7xd) zum Rand einbringen, weitere Nägel vom Ende beginnend einbauen.



# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

#### Pfettenanker - PFE





PFE Pfettenanker werden für die Zugverankerung von sich kreuzenden Hölzern verwendet und sollten vorzugsweise diagonal gegenüberliegend verbaut werden. Neben den Zugkräften können horizontale Kräfte aufgenommen werden. Belastungsabhängig kommen 2 oder 4 Pfettenanker pro Anschluss zur Anwendung. Bei 2 Pfettenankern pro Anschluss werden 2 linke oder 2 rechte Verbinder benötigt. Die PFE werden satzweise (rechts + links) verkauft. Die Einschlagzacke dient als Montagehilfe.

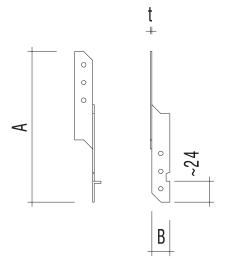
Material: Stahlsorte: S250GD + Z275 gemäß DIN EN10346.

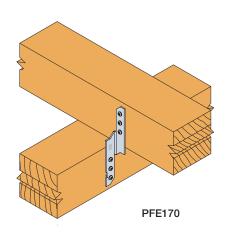
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20  $\mu m.$ 

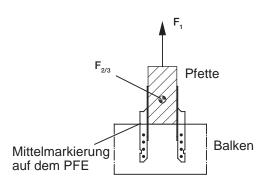
**Befestigung:** Der Anschluss an das Holz erfolgt mit CNA4,0x $\ell$  Kammnägeln oder CSA5,0x $\ell$  Schrauben.









Produktabmessungen


Tabelle 1

| Art. Nr. | Ab  | messung (r | L   | öcher |        |
|----------|-----|------------|-----|-------|--------|
|          | Α   | В          | t   | Ø     | Anzahl |
| PFE170-B | 170 | 20         | 2,5 | 5     | 3 + 3  |
| PFE210-B | 210 | 20         | 2,5 | 5     | 4 + 4  |

PFE Pfettenanker werden satzweise geliefert

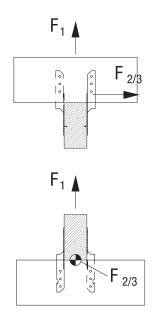






SIMPSON

Strong-Tie


#### Pfettenanker - PFE

#### Charakteristische Werte der Tragfähigkeit

| Tabelle | 0 |
|---------|---|
| rabelle | _ |

| Pfettenanker | Verbindungs            | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Verbinder pro Anschluss |                              |      |                         |                              |
|--------------|------------------------|-----------------------------------------------------------------------------|------------------------------|------|-------------------------|------------------------------|
|              | Тур                    | Anzahl pro<br>Schenkel                                                      | R <sub>1,k</sub><br>min. von |      |                         | = R <sub>3,k</sub><br>n. von |
| PFE170       | CNA4,0x40<br>Kammnägel | 2                                                                           | 4,9                          |      | 0,8                     |                              |
| PPEI/U       |                        | 3                                                                           | 9,0<br>k <sub>mod</sub>      | 9,0  | 2,0                     |                              |
| PFE210       |                        | 3                                                                           | 9,0<br>k <sub>mod</sub>      | 9,0  | 1,5                     |                              |
| PFEZIU       |                        | 4                                                                           | 9,0<br>k <sub>mod</sub>      | 13,1 | 3,0<br>k <sub>mod</sub> | 3,1                          |

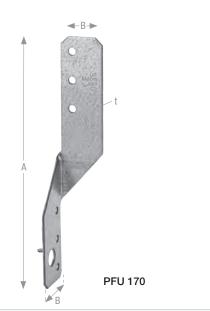
Bei drehsteifer Lagerung um die Längsachsen der Hölzer, kann für einen Pfettenanker die Hälfte der Tragfähigkeit  $R_{1,k}$  von zwei Pfettenankern angenommen werden. Weitere Infos finden Sie in der ETA und auf unserer Website **strongtie.de** 



#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Pfette 60/160 an Binder, gewählter Verbinder: 2 Stück PFE210; mit je 4 CNA4,0x40 Kammnägeln


Belastung:  $F_{1,d} = 3.9 \text{ kN}$ ;  $F_{3,d} = 0.8 \text{ kN}$ ; NKL.2; KLED:  $kurz \Rightarrow k_{mod} = 0.9$ 

$$R_{1,d} = 9.0 \ / \ 0.9 \ \times \ 0.9 \ / \ 1.3 = 6.9 \ kN$$
 oder  $R_{1,d} = 13.1 \times 0.9 \ / \ 1.3 = 9.1 \ kN \Rightarrow$  nicht maßgebend

$$R_{\rm 3,d}=3.0~/~0.9~x~0.9~/~1.3=2.3~kN~ \Rightarrow {\rm nicht~maßgebend}$$
 oder  $R_{\rm 3,d}=3.1~x~0.9~/~1.3=2.1~kN$ 

**Nachweis:** 
$$\frac{3.9}{6.9} + \frac{0.8}{2.1} = 0.95 < 1 \Rightarrow 0k$$

# **SIMPSON** Strong-Tie



PFU Pfettenanker werden für die Zugverankerung von sich kreuzenden Hölzern verwendet. Ebenso können horizontale Kräfte aufgenommen werden. Belastungsabhängig kommen 2 oder 4 Pfettenanker pro Anschluss zur Anwendung. PFU Pfettenanker sind links und rechts verwendbar. Die Einschlagzacke dient als Montagehilfe.

Material: Stahlsorten: S250GD + Z275 oder S350GD + Z275 gemäß DIN EN10346.

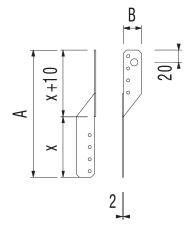
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

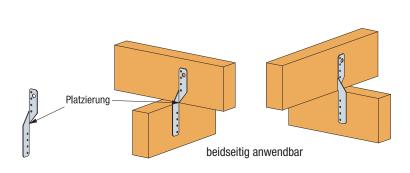
Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.

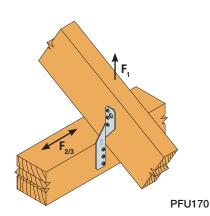







C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.


Produktabmessungen


Tabelle 1

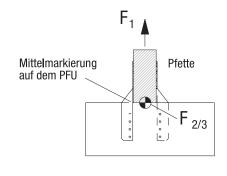
| Art. Nr.             | Abmessung [mm] |    |     | Löc | her    |
|----------------------|----------------|----|-----|-----|--------|
|                      | Α              | В  | t   | Ø   | Anzahl |
| PFU170               | 170            | 30 | 2,0 | 5   | 3+3    |
| PFU210 <sup>1)</sup> | 210            | 30 | 2,0 | 5   | 4 + 4  |
| PFU250 <sup>1)</sup> | 250            | 30 | 2,0 | 5   | 5 + 5  |

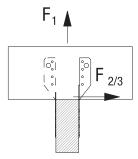
1) Stahlsorte S350GD








#### Pfettenanker - PFU


# SIMPSON Strong-Tie

#### Charakteristische Werte der Tragfähigkeit

| Tabelle | 2 |
|---------|---|
|         |   |

| Pfettenanker | Verbindungsmittel          |        | Charakteristische Werte der Tragfähigkeit [kN]<br>2 Verbinder pro Anschluss |                                 |                              |  |  |
|--------------|----------------------------|--------|-----------------------------------------------------------------------------|---------------------------------|------------------------------|--|--|
|              | Typ Anzahl pro<br>Schenkel |        | R <sub>1,k</sub><br>min. von                                                |                                 | $R_{2,k} = R_{3,k}$ min. von |  |  |
| PFU170       |                            | 2 3    | 5,5<br>9,5                                                                  |                                 | 0,8<br>2,0                   |  |  |
| PFU210       | CNA4,0x40<br>Kammnägel     | 3<br>4 | 9,6<br>13,6                                                                 | <u>14,6</u><br>k <sub>mod</sub> | 1,5<br>3,1                   |  |  |
| PFU250       |                            | 4<br>5 | 13,6<br>17,6                                                                |                                 | 2,6<br>4,5                   |  |  |

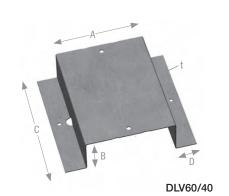




#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Pfette 60/160 an Binder, gewählter Verbinder: 2 Stück PFU210; mit je 4 CNA4,0x40 Kammnägeln


**Belastung:**  $F_{1,d} = 5.6 \text{ kN}; F_{2,d} = 0.7 \text{ kN}; \text{ NKL.2}; \text{ KLED: kurz} \Rightarrow k_{mod} = 0.9$ 

$$R_{_{1,d}} = 13,6 \times 0,9 \ / \ 1,3 = 9,4 \ kN$$
 oder  $R_{_{1,d}} = 14,6 \ / \ 0,9 \times 0,9 \ / \ 1,3 = 11,2 \ kN \Rightarrow$  nicht maßgebend

$$R_{2,d} = 3,1 \times 0,9 / 1,3 = 2,1 \text{ kN}$$

**Nachweis:**  $\frac{5,6}{9,4} + \frac{0,7}{2,1} = 0,93 < 1 \Rightarrow Ok$ 

# **SIMPSON** Strong-Tie



Mit den DLV Dachlattenverbindern können Dachlattenstöße auf Tragkonstruktionen, unter Einhaltung der Mindestrandabstände für die Nägel, hergestellt und auf den Sparren verankert werden. Anwendung finden sie auf schmalen Sparren, wie z. B. bei Nagelplattenbindern. Die DLV Dachlattenverbinder sind in alle Achsrichtungen belastbar.

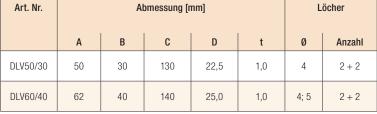
Material: Stahlsorte: S250GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

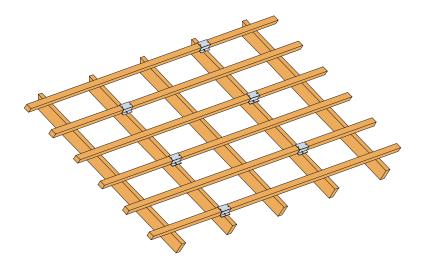
Befestigung: Der Anschluss an das Holz erfolgt je nach statischen Vorgaben mit Glattschaftnägeln, CNA Kammnägeln oder CSA Verbinderschrauben.

Konform zu den Fachregeln des Dachdeckerhandwerks









ETA-10/0440 DoP-e10/0440

#### Produktabmessungen

|          | Tabelle 1 |
|----------|-----------|
| ung [mm] | Löcher    |
|          |           |







#### Anwendungshinweis:

Die Anwendung der Dachlattenverbinder DLV vermeidet aufgeplatzte Lattenenden durch randnahe Nägel, macht aufwändige und störende Verbreiterungen der Sparren, extrabreite Konterlatten oder Präzisionsarbeiten im Millimeterbereich überflüssig. DLV Dachlattenverbinder können selbstverständlich auch an durchgehenden Lattenauflagern eingesetzt werden.

### Dachlattenverbinder – **DLV**

# Strong-Tie

#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Verbindungsmittel<br>im Sparren oder | Charakteristische Werte der Tragfähigkeit [kN] bei einem DLV50/30 je<br>Anschluss |                                      |                                        |  |  |  |  |
|--------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|--|--|--|--|
| der Konterlatte                      | $R_{t,k}$                                                                         | $R_{\scriptscriptstyle 2,k}$         | R <sub>3,k</sub>                       |  |  |  |  |
|                                      | Verbindungsmittel in der Dachlatte                                                |                                      |                                        |  |  |  |  |
|                                      | Schraube CSA4,0x30 <sup>1)</sup>                                                  | Kein Verbindungsmittel erforderlich  |                                        |  |  |  |  |
| Kammnagel CNA3,1x60                  | 1,13                                                                              | 0,79 / k <sub>mod</sub>              | $0.34 / k_{mod} + 1.4 / k_{mod}^{0.4}$ |  |  |  |  |
| Schraube CSA4,0x30                   | 1,13                                                                              | 0,79 / k <sub>mod</sub>              | 0,34 / k <sub>mod</sub> + 1,36         |  |  |  |  |
| Glattschaft-Nagel 3,1x80             | 1,13                                                                              | min (1,18; 0,79 / k <sub>mod</sub> ) | 0,34 / k <sub>mod</sub> + 0,76         |  |  |  |  |
| Glattschaft-Nagel 3,4x90             | 1,13                                                                              | 0,79 / k <sub>mod</sub>              | 0,34 / k <sub>mod</sub> + 0,88         |  |  |  |  |

<sup>1)</sup> Für DLV50/30 nur bei aktiver F<sub>1</sub> Last

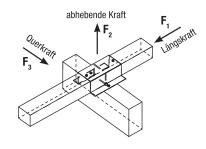
#### Anwendungshinweis:

Die Mindestbreite der Sparren, bzw. der Konterlatten ergibt sich aus dem Durchmesser der verwendeten Nägel und den dafür vorgesehenen Mindestrandabstände zum belasteten oder unbelasteten Rand gemäß EC5 Tab. 8.2.

# Charakteristische Werte der Tragfähigkeit

Tabelle 3

| Verbindungsmittel<br>im Sparren oder<br>der Konterlatte | Charakteristische Werte der Tragfähigkeit [kN] bei einem I<br>Anschluss<br>R <sub>1,k</sub>   R <sub>2,k</sub>  <br>Verbindungsmittel in der Dachlatte<br>Kammnagel CNA4,0x40 oder Schraube CSA5,0x3 |                                      |                                |  |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|--|--|--|
| Kammnagel CNA4,0x40                                     | 1,27                                                                                                                                                                                                 | min (1,47; 1,48 / k <sub>mod</sub> ) | 0,31 / k <sub>mod</sub> + 1,83 |  |  |  |
| Glattschaft-Nagel 3,1x80                                | 1,27                                                                                                                                                                                                 | 1,18                                 | 0,31 / k <sub>mod</sub> + 0,69 |  |  |  |
| Glattschaft-Nagel 3,4x90                                | 1,27                                                                                                                                                                                                 | min (1,47; 1,48 / k <sub>mod</sub> ) | 0,31 / k <sub>mod</sub> + 0,88 |  |  |  |


Sämtliche Belastungen sind in die nebenstehenden Kraftkomponenten zu zerlegen, in der Kraftrichtung F<sub>2</sub> sind nur abhebende Werte zu berücksichtigen. Wird der DLV auf einer Konterlatte angebracht, so ist sicherzustellen, dass die Konterlatte auf dem Sparren für die auftretenden Kräfte ausreichend befestigt ist.

Bei Verwendung von CNA4,0x40 Kammnägeln in dem Sparren gilt:

$$\left| \frac{F_{1,d}}{B_{1,d}} \right|^2 + \left| \frac{F_{3,d}}{B_{1,d}} \right|^2 + \left| \frac{F_{2,d}}{B_{1,d}} \right|^2 \le 1,0$$

Bei Verwendung von Nägeln 3,1x80 oder 3,4x90 in dem Sparren gilt:

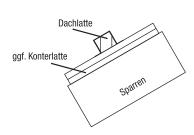
$$\sqrt{\left(\frac{F_{1,d}}{R_{1,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2} + \frac{F_{2,d}}{R_{2,d}} \le 1,0$$



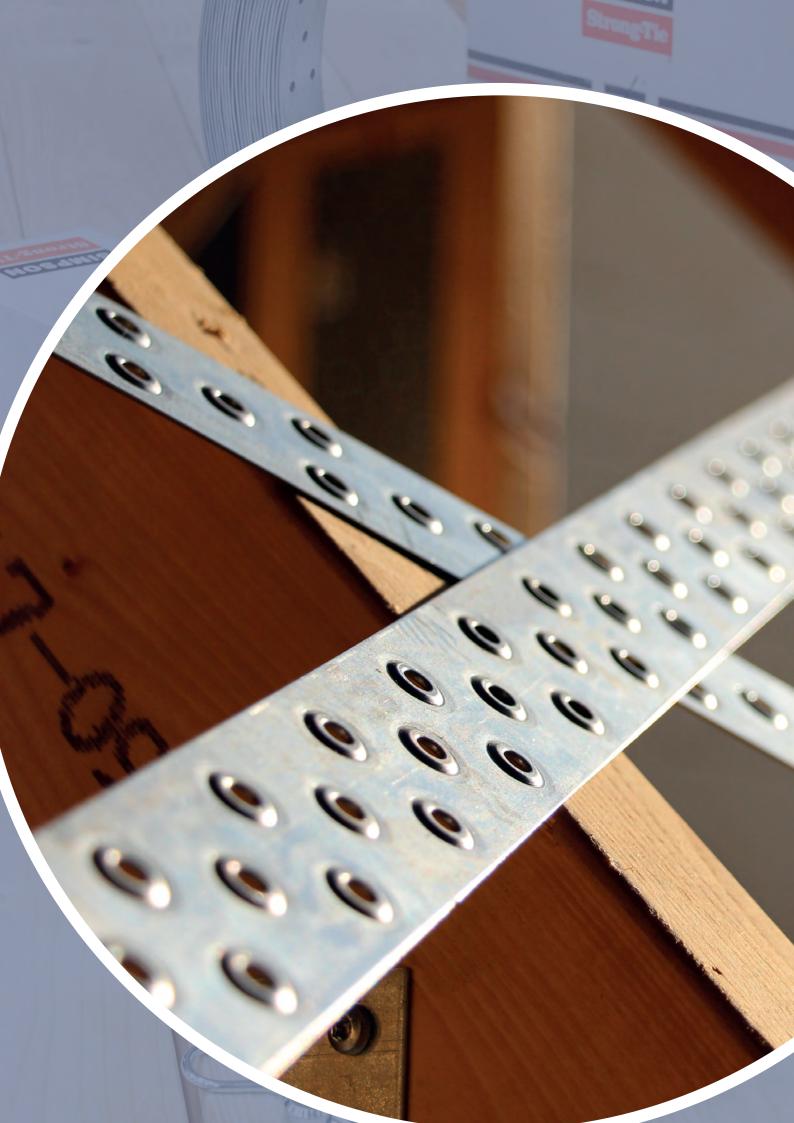
#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Anschluss von Dachlatten mit DLV50/30 auf einer Konterlattung 60/40 Befestigung mit Glattschaftnägeln 3,4x90; Dachneigung 35°,


**Belastung:**  $F_d = -0.75 \text{ kN}$  (abhebend), NKL2, KLED:  $kurz \Rightarrow k_{mod} = 0.9$ 

$$F_{2,d} = 0.75 \times \cos 35^{\circ} = 0.62 \text{ kN}$$
  
 $F_{3,d} = 0.75 \times \sin 35^{\circ} = 0.43 \text{ kN}$ 


$$\min \left\{ \begin{array}{l} R_{2,d} = 1,47 \times 0,9 \ / \ 1,3 = 1,02 \ bzw. \\ R_{2,d} = 1,48 \times 0,9 \ / \ 0,9 \ / \ 1,3 = 1,14 \ kN \Rightarrow nicht \ maßgebend \end{array} \right.$$

$$R_{3,d} = 0.88 + 0.31 / 0.9 = 1.22 \text{ kN}$$

**Nachweis:** 
$$\frac{0,43}{1,22} + \frac{0,62}{1,02} = 0,96 < 1 \text{ Ok}$$











# Aussteifung, Lochbänder

| Lochbänder, Aussteifung – Allgemeines       | 156       |
|---------------------------------------------|-----------|
| Lochbänder – BAN                            | 157       |
| Lochbänder – BANS / BANW / FBAR             | 158       |
| Bandabroller – BANA2                        | 159       |
| Windrispenband – BAN                        | 160-163   |
| Spanngeräte – BANSTR / BANSTR4              | 164       |
| Clips – BF                                  | 165       |
| Spanngeräte – BNSP / BPST                   | 166-167   |
| Bandanschlüsse – BNF / BNG / BNK            | . 168-169 |
| Bandanschlüsse – BNKK                       | 170       |
| Aussteifung – Systemübersicht               | 171       |
| Aussteifung – Anwendungsbeispiele           | . 172-173 |
| Windverbandanschlüsse – BNW                 |           |
| Windverbandanschlüsse – BNWA / BNWM         | 176       |
| Windverbandanschlüsse – Anwendungsbeispiele | 177       |
|                                             |           |

SIMPSON

## Lochbänder, Aussteifung – Allgemeines

Anwendung: Windrispenbänder und dazugehörige Anschlusssysteme dienen zur Aussteifung von Tragwerken, nicht nur im Dachbereich sondern auch in Wand- und Deckenebenen. Das Angebot der Rispenbänder reicht von unterschiedlichen Dimensionen und Stahlsorten, über Anschluss- und Spannelemente bis hin zu Zuglaschen.

1,5 mm dicke Bänder weisen aufgrund einer höheren Stahlfestigkeit die gleiche Tragfähigkeit auf wie 2 mm dicke Bänder bei gleicher Breite. CNA Kammnägel dürfen bei den 1,5 mm Bändern für dicke Bleche bemessen werden.

Material: Stahlsorte: S250 GD/ S350GD + Z 275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.

Montage und Ausführungshinweise: Werden Windrispenbänder als Teil eines statisch bestimmten Systems bemessen, müssen sie auch dementsprechend sorgfältig verbaut werden. An den Endpunkten müssen Windrispenbänder nach den statischen Vorgaben verankert werden. Wird ein Rispenband oberseitig auf einer Sparrenlage angeordnet, müssen alle zur Kraftübertragung notwendigen Kammnägel rechtwinklig auf der Oberseite der Sparren am Fuß- und Firstpunkt eingebracht werden. Da die Sparren in der Regel nicht genügend Fläche aufweisen, kann mit der Verwendung von BNF oder BNG Bandanschlüssen Abhilfe geschaffen werden. Das Umschlagen der Bänder um die Sparren und das Vernageln seitlich daran und/oder auf der Schwelle ist nicht zulässig.

Ein Windrispenband ist statisch nur wirksam, wenn es ausreichend vorgespannt wird. Eine regelrechte Spannung kann bei der Montage mit dem Spanngerät BANSTR vor der Vernagelung erfolgen. Zum Spannen im eingebauten Zustand, oder in Verbindung mit dem Windverbandsystem, bieten sich BNSP Spanngeräte an. Am Einleitungspunkt der Last in den Sparren muss der Sparren gegen Kippen und Verdrehen durch eine entsprechende Verbindung mit der Pfette gesichert werden. Dieses kann im Anschlussfeld durch Füllhölzer, Knaggen oder Winkelverbinder in Verbindung mit Sparrenpfettenankern erreicht werden. Des Weiteren sind der Sparren und die Versteifungen schubfest mit der Schwelle oder dem Ringbalken zu verankern.



#### Lochbänder – BAN

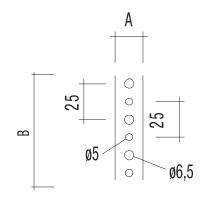




BAN Lochbänder sind in den Dicken 1,0 mm und 1,5 mm in jeweils verschiedenen Längen erhältlich. Die Bänder werden zur Verankerung von Holzbauteilen im niederen Lastbereich und als konstruktive Anschlüsse verwendet.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Taballa 2


Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke

Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.



## Produktabmessungen

#### Tabelle 1 Art. Nr. Abmessung [mm] Löcher Ø Α B [m] BAN102003 20 3 5; 6,5 BAN102010 20 10 1,0 5; 6,5 BAN102025 20 25 5; 6,5 BAN152010 20 10 5; 6,5 1,5 BAN152025 20 25 5; 6,5



#### Charakteristische Werte der Tragfähigkeit

| 01100100110 | racerio rrente del magi       | an iigi tort                                 |
|-------------|-------------------------------|----------------------------------------------|
| Art. Nr.    | Charakteristische Werte der T | ragfähigkeit R <sub>1,k</sub> [kN]; min. von |
| BAN1020XX   | 4,0 / K <sub>mod</sub>        | n x R <sub>lat.k</sub>                       |
| BAN1520XX   | 6,0 / k <sub>mod</sub>        | n x R <sub>tat,k</sub>                       |

n = Anzahl der Nägel

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

R<sub>lat k</sub> = charakteristische Tragfähigkeit der Nägel auf Abscheren

#### Beispiel:

BAN102025,  $F_{1,d} = 3.0$  kN, NKI1, KLED: kurz  $\Rightarrow k_{mod} = 0.9$ Anschluss mit 3 CNA4,0x40

 $R_{1d} = 3 \times 1,83 \times 0,9 / 1,3 = 3,80 \text{ kN bzw.}$ 

 $R_{1,d} = 4.0 / 0.9 \times 0.9 / 1.3 = 3.1 \text{ kN} \Rightarrow \text{maßgebend}$ 

**Nachweis:**  $\frac{3.0}{3.1} = 0.97 \le 1.0 \Rightarrow Ok$ 

#### Lochbänder - BANW / FBAR





BANS und BANW Lochbänder werden zur Verankerung von Holzbauteilen im niederen Lastbereich und als konstruktive Anschlüsse verwendet. Typische Verwendungsbereiche sind Spielgeräte, Leitungsbefestigungen, leichte Deckenabhängungen und Eckhalterungen.

Die FB Lochbänder (practilett®) werden aus sendzimirverzinktem Stahl hergestellt und einige Größen erhalten eine zusätzliche farbige Ummantelung aus schlagfestem Kunststoff. Sie werden für konstruktive Zwecke wie Kabelbefestigungen oder Rohrabhängungen verwendet. Die Bänder sind in Hartkartonabrollbehältern erhältlich.

Bitte beachten: Die hier aufgezeigten Lochbänder eignen sich nicht zur tragenden Aussteifung von Gebäuden. Für diesen Zweck sind ausschließlich Windrispenbänder geeignet (Kapitel 4).

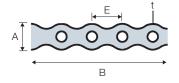




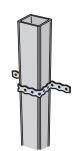


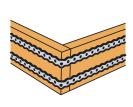


Einige Typen


#### Produktabmessungen

Art. Nr. Löcher Material Abmessung [mm] Α B [m] BANW071203S Werkstoff 1.4401 12 3 0,7 14 5 S250GD + Z275 BANW071210 12 10 0,7 14 5 BANW071710 S250GD + Z275 17 10 0,7 19,8 7 S250GD + Z275 BANW071725 17 25 0,7 19,8 7 DX51D+Z kunststoffummantelt 5,7 2,4 FBPR16B 16 10 0,8 20,0 FBAR26-B DX51D+Z 10 1,2 8,6
















**SIMPSON** 

# Bandabroller - BANA2



BANA2 Bandabroller sind die optimale Lager- und Schneidevorrichtung für Windrispenband von 25 bis 60 mm Breite.

# Produktbeschreibung

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

| - 1- | - 1 | 1 - | 4   |
|------|-----|-----|-----|
| ar   | ച   | ID. | - 1 |

| Art. Nr. | Beschreibung               |
|----------|----------------------------|
| BANA2-B  | Bandabroller mit Richtwerk |

#### Windrispenband - BAN





BAN Windrispenbänder können vielseitig für Baukonstruktionen verwendet werden, dienen aber hauptsächlich zur Aussteifung von Dachkonstruktionen, in denen sie als Zugstäbe eingesetzt werden.

Material: Stahlsorte: S250GD / S350GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm. BAN154025 und BAN154050 werden aus dem höher belastbaren S350GD Stahl hergestellt; Zinkschichtdicke ca. 20  $\mu m$ . BAN094050 aus S550GD + Z275.

Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Der Anschluss an das Simpson Strong-Tie® Windverbandsystem erfolgt mit Clips oder Schrauben M5x12 (Festigkeit 8.8).

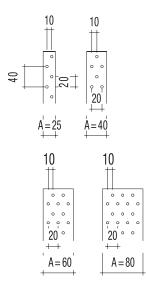
Vorteile: Die Ausführungen, BAN154025, BAN154050, BAN156050, BAN204025 und BAN204050 sind mit einer Metermarkierung von 0,5 bis 25 m, bzw. 50 m ausgestattet.












Produktabmessungen

Tabelle 1

| Art. Nr.                   | P  | Löcher |     |   |  |
|----------------------------|----|--------|-----|---|--|
|                            | A  | B [m]  | t   | Ø |  |
| BAN094050 1) 3)            | 40 | 50     | 0,9 | 5 |  |
| BAN154025 1) 2)            | 40 | 25     | 1,5 | 5 |  |
| BAN154050 <sup>1) 2)</sup> | 40 | 50     | 1,5 | 5 |  |
| BAN156050 <sup>1)</sup>    | 60 | 50     | 1,5 | 5 |  |
| BAN158025 <sup>2)</sup>    | 80 | 25     | 2,0 | 5 |  |
| BAN202510                  | 25 | 10     | 2,0 | 5 |  |
| BAN202525                  | 25 | 25     | 2,0 | 5 |  |
| BAN204025 1)               | 40 | 25     | 2,0 | 5 |  |
| BAN204050 1)               | 40 | 50     | 2,0 |   |  |
| BAN206050                  | 60 | 50     | 2,0 | 5 |  |
| BAN208025                  | 80 | 25     | 2,0 | 5 |  |
| BAN304050                  | 40 | 50     | 3,0 | 5 |  |

1) mit Metermarkierung 2) Material: S350GD 3) Material: S550GD



# Windrispenband - BAN



#### Charakteristische Werte der Tragfähigkeit

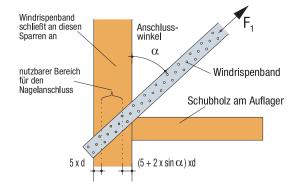
Tabelle 2

| Art. Nr.  | Bruchdehnung 1) | Charakteristische Werte der Tragfähigkeit $\mathbf{R}_{\mathrm{1,k}}[\mathrm{kN}];$ min. von |             |          |          |          |  |  |  |  |
|-----------|-----------------|----------------------------------------------------------------------------------------------|-------------|----------|----------|----------|--|--|--|--|
|           |                 | bei Verwendung von Kammnägeln CNA4,0xℓ                                                       |             |          |          |          |  |  |  |  |
|           | [%]             |                                                                                              | 35 40 50 60 |          |          |          |  |  |  |  |
| BAN2025xx | 19              | 11,8 / k <sub>mod</sub>                                                                      |             |          |          |          |  |  |  |  |
| BAN0940xx | 2,5             |                                                                                              |             |          |          |          |  |  |  |  |
| BAN1540xx | 16              | 17,7 / k <sub>mod</sub>                                                                      |             |          |          |          |  |  |  |  |
| BAN2040xx | 19              |                                                                                              |             |          |          |          |  |  |  |  |
| BAN1560xx | 16              |                                                                                              | 1,68 x n    | 1,83 x n | 2,22 x n | 2,36 x n |  |  |  |  |
| BAN2060xx | 19              | 26,6 / k <sub>mod</sub>                                                                      |             |          |          |          |  |  |  |  |
| BAN3040xx | 19              |                                                                                              |             |          |          |          |  |  |  |  |
| BAN1580xx | 16              | 25 E / Iv                                                                                    |             |          |          |          |  |  |  |  |
| BAN2080xx | 19              | 35,5 / k <sub>mod</sub>                                                                      |             |          |          |          |  |  |  |  |

<sup>&</sup>lt;sup>1)</sup> Diese Werte beziehen sich ausschließlich auf die Bänder, zur Ermittlung der Duktilität des Bauteils sind die Anschlüsse mit zu berücksichtigen.

#### Anwendungshinweis:

Bei größeren Belastungen können mehrere Bänder nebeneinander eingebaut werden. In diesen Fällen werden BNSP Spanngeräte empfohlen, um ein gleichmäßiges Spannen der Bänder zu ermöglichen.


#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

BAN156050,  $F_{1,d} = 19,7kN$ , NKI2, KLED:  $kurz \Rightarrow k_{mod} = 0,9$ Anschluss mit 13 x CNA4,0x50

$$\begin{aligned} &R_{1,d} = 26,6 \text{ / } 0,9 \text{ x } 0,9 \text{ / } 1,3 = 20,46 \text{ bzw.} \\ &R_{1,d} = 13 \text{ x } 2,22 \text{ x } 0,9 \text{ / } 1,3 = 19,98 \Rightarrow \text{maßgebend} \\ &19,7 \text{ / } 19,98 = 0,99 < 1,0 \end{aligned}$$

Es muss überprüft werden ob bei der vorliegenden Sparrenbreite 13 Kammnägel unter Berücksichtigung der erforderlichen Randabstände im Windrispenband eingebracht werden können. Andernfalls muss der Sparren mit Beihölzern verbreitert werden, oder das Windsrispenband mit dem Windaussteifungssystem angeschlossen werden.



n = Nagelanzahl am Verankerungspunkt





#### Innovation kann so leicht sein

Die "Strong Holes" bewirken, dass die Tragfähigkeit im Gegensatz zu herkömmlich produzierten Bändern nicht reduziert werden muss.



# SIMPSON Strong-Tie

# Dünnes Blech und trotzdem dick

Warum das nur 0,9 mm dünne Windrispenband BAN094050 von Simpson Strong-Tie® trotzdem dick ist:

Die Anschlüsse von Windrispenbändern werden vielfach mit Kammnägeln ausgeführt. Grundsätzlich kann jeder CE-gekennzeichnete Kammnagel mit 4 mm Durchmesser für alle Simpson Strong-Tie® Windrispenbänder mit 5 mm Löchern eingesetzt werden.

Laut der Bemessungsnorm für Holz, dem Eurocode 5, gilt ein Blech als dick, wenn seine Dicke größer oder gleich dem halben Nageldurchmesser ist, d.h. für einen Kammnagel mit 4 mm Durchmesser muss ein Blech mindestens 2,0 mm dick sein, um es als dickes Blech bemessen zu können.

Das bedeutet für die meisten Kammnägel auf dem Markt, dass sie bei 1,5 mm dicken Windrispenbändern nach der Formel für dünne Bleche bemessen werden müssen.

Die Berechnungsformel für dicke Bleche hat den Vorteil, dass höhere Nageltragfähigkeiten erzielt werden und Anschlüsse daher mit weniger Nägeln auskommen.

Dieses wirkt sich auf einer schmalen Sparrenoberseite sehr vorteilhaft aus um alle benötigten Nägel mit ausreichendem Randabstand einbringen zu können. Außerdem spart es Nägel und die Zeit des Einschlagens.

Durch ein optimiertes Nageldesign hat Simpson Strong-Tie® erreicht, dass die höheren Nageltragfähigkeiten auch bei dünneren Blechen angewandt werden dürfen. Dieses wurde durch umfangreiche Tests nachgewiesen und ist in der ETA-04/0013 dokumentiert.

Aus diesem Grund dürfen Blechanschlüsse mit CNA4.0xl Kammnägeln von Simpson Strong-Tie® bereits ab 1,0 mm Blechdicke wie dicke Bleche berechnet werden.

Das BAN094050 Windrispenband wiederum ist zwar in seinem Kern nur 0,9 mm dick, weist jedoch durch die Verdrängung des Materials um die Nagellöcher herum in diesem Bereich eine Dicke von 1,2 mm auf, was die Löcher zu "Strong Holes" macht.

Damit ist, in Verbindung mit CNA4.0xℓ, auch das BAN094050 als dickes Blech einzustufen.

Zur Verifizierung wurde dieses günstige Tragverhalten ebenfalls durch umfassende Versuche bestätigt.





C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC





Aussteifung, Lochbänder

# Spanngeräte - BANSTR / BANSTR4





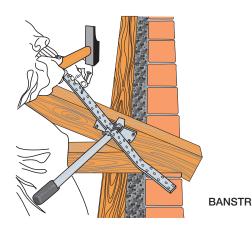
BANSTR

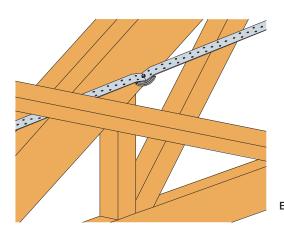


Ein Windrispenband ist statisch nur wirksam, wenn es genügend vorgespannt wird. Zu diesem Zweck werden verschiedene Spanngeräte angeboten:

#### BANSTR Spanngerät

Dies ist ein sehr nützliches Handgerät für Windrispenbänder bis 40x2,0 mm. BANSTR kann auch für 60 mm breite Windrispenbänder verwendet werden. Das Windrispenband muss bis zur endgültigen Vernagelung über das Festhalten des Handhebels fixiert werden.


#### BANSTR4 Windrispenbandclip


Ein wirkungsvolles Zubehör um durchhängende Windrispenbänder zu begradigen. Windrispenbänder sind stets straff einzubauen. Sollten nach einiger Zeit nicht vernachlässigbare Durchhänge auftreten, kann mit dem BANSTR4 Abhilfe geschaffen werden. Bei Verwendung des BANSTR4, muss bei Vollauslastung des Windrispenbandes mit einer zusätzlichen Längenverformung von mind. 2 mm je Clip gerechnet werden. Daher wird für verformungsempfindliche Tragwerke (z.B. Nagelplattenbinderkonstruktionen) die Verwendung von Spanngeräten des Typs BNSP passend zur vorhandenen Rispenbandbreite empfohlen.

## Produktbeschreibung

Tabelle 1

|          | •                              |   |
|----------|--------------------------------|---|
| Art. Nr. | Beschreibung                   |   |
| BANSTR   | Montagespanngerät mit Hebelarm | ı |
| BANSTR4  | Windrispenbandclip zum Einbau  |   |





BANSTR4

## Clips - **BF**





BF Clips bestehen aus einem Trägerblech und zwei eingepressten M5 Schrauben mit Flügelmuttern und werden für die Verbindung von Windrispenbändern an die Anschlussbauteile des Windaussteifungssystems verwendet.

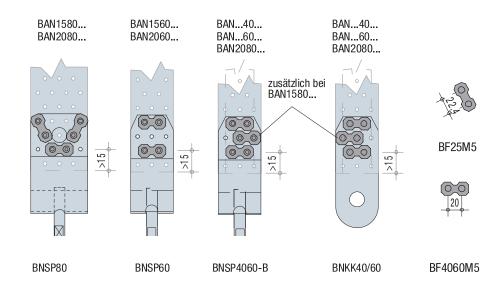
BF4060M5 ist passend für 20 mm Lochabstand (Montage quer), BF25M5 ist passend für 22,4 mm Lochabstand (Montage diagonal).

Material: Schraube und Flügelmutter Güte 8.8 Trägerblech S250GD + Z275



#### Produktabmessungen

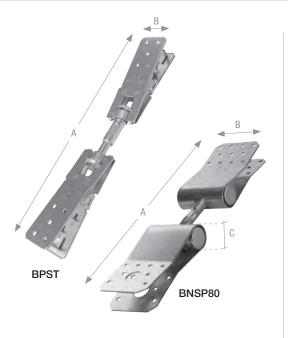
| labelle | ٦ |
|---------|---|
|         |   |


| Art. Nr. | Abmessung [mm]  d Länge |    | Abmessung [mm] Geeignet für folgende Windrispenbänder     |                            |  |  |  |  |
|----------|-------------------------|----|-----------------------------------------------------------|----------------------------|--|--|--|--|
|          |                         |    | d Länge                                                   |                            |  |  |  |  |
| BF25M5   | 5                       | 12 | BANXX25XX                                                 | 25 (Für Lochabstand 23 mm) |  |  |  |  |
| BF4060M5 | 5                       | 12 | BANXX40XX;<br>BANXX60XX; 25 (Für Lochabstand<br>BANXX80XX |                            |  |  |  |  |



#### Anwendungshinweis:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.


BF Clips lassen sich auch gut zum Verlängern von Windrispenabschnitten verwenden. Um Exzentrizitäten im Zugband auszuschließen, sollten oberhalb und unterhalb des Bandes kurze Abschnitte aufgelegt werden, die dann mit BF Clips oder Schrauben M5xl (Festigkeit 8.8) verbunden werden. Die Anordnung der Verbindungsmittel je Seite kann den Zeichnungen der BNSP Spanngeräte entnommen werden.



**Aussteifung**,

# SIMPSON Strong-Tie

## Spanngeräte – BNSP / BPST



BNSP / BPST Spanngeräte werden in Verbindung mit dem Windaussteifungssystem bereits während der Montage eingebaut, oder nachträglich in vorhandene Konstruktionen, in denen ein kontrolliertes und wirksames Nachspannen notwendig geworden ist. Dazu wird im Sparrenfeld aus dem vorhandenen Windrispenband die erforderliche Länge herausgetrennt und das Spanngerät eingefügt. Mit einem Gabelschlüssel kann dann die erforderliche Spannung hergestellt werden.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm. Gewindestäbe: S355J2G3C+C gemäß EN10278, galvanisch verzinkt Quergewindebolzen: Stahl 11S Mn30 gemäß EN10277, galvanisch verzinkt.

Befestigung: Der Anschluss erfolgt i.d.R. über die beiliegenden Clips, die werkzeuglos montiert werden können. Anstelle der Clips können den Packungen auch Schrauben M5x12 (Festigkeit 8.8) und Muttern beiliegen. Zwei einzelne Schrauben werden dann anstelle eines Clips verwendet.







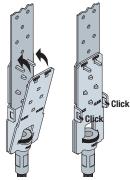


ETA-10/0440 DoP-e10/0440

#### Produktabmessungen

Tabelle 1

| Art. Nr.    | Abmessung [mm] |    | Abmessung [mm] Löcher |              | Passende Bänder | Mitgelieferte<br>Schrauben/Clips | Befestigt Bänder an                                 |                                              |        |               |
|-------------|----------------|----|-----------------------|--------------|-----------------|----------------------------------|-----------------------------------------------------|----------------------------------------------|--------|---------------|
|             | A              | В  | С                     | Ø [mm]       | links           | s rechts                         |                                                     |                                              | Bänder | BNF; BNG; BNK |
| BNSP60-B    | 300-350        | 60 | 35                    | 5            | 7               | 7                                | BANxx60xx                                           | 4 x BF Clips (20 mm)                         | /      | _             |
| BNSP80-B    | 300-360        | 80 | 35                    | 5; 21        | 11; 0           | 10; 1                            | BANxx80xx                                           | 2 x BF Clips (20 mm)<br>4 x BF Clips (23 mm) | /      | ✓             |
| BNSP25B-B   | 265–305        | 25 | 25                    | 5; 6,5; 12,5 | 6; 2; 0         | 0; 0; 1                          | BANxx20xx;<br>BANxx25xx                             | 2 x M6 <sup>2)</sup> ; 3 x M5 <sup>2)</sup>  | _      | ✓             |
| BNSP4060B-B | 350-400        | 60 | 35                    | 5; 21        | 7; 0            | 0; 1                             | BANxx40xx;<br>BANxx60xx;<br>BANxx80xx <sup>3)</sup> | 2 x BF Clips (20 mm)<br>1 x Ø20 1)           | _      | ✓             |


<sup>1)</sup> Steckbolzen Ø 20 inkl. Sicherungssplit

#### Produktabmessungen


| Art. Nr. | Abmessung [mm] |  | messung [mm] Gewinde |   | Anzahl Pin | Passende Bandbreite |  |  |
|----------|----------------|--|----------------------|---|------------|---------------------|--|--|
|          | A B t          |  |                      |   |            |                     |  |  |
| BPST     | 325-365 52 2,5 |  | M12                  | 6 | 40         |                     |  |  |



Schritt 1: Das Windrispenband in den geöffneten Bandlock® Pro, über die aufgestellten Stifte einlegen.



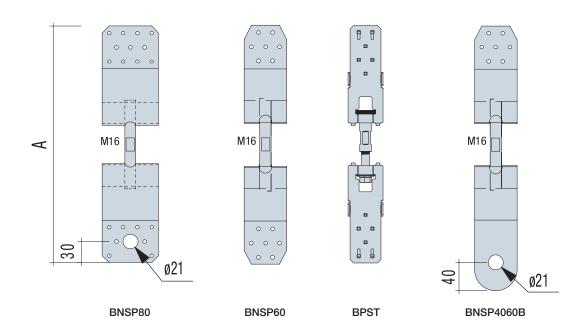
Schritt 2: Deckel und Boden des Bandlock® Pro mit einer Zange zusammendrücken, bis der Deckel in die beiden seitlichen Klemmen eingerastet ist.



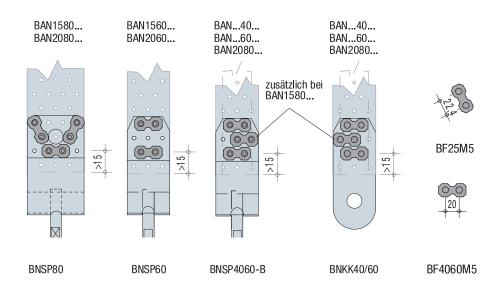
Schritt 3: Die beiden vorderen, überstehenden Stifte mit der Zange zur Gewindeseite hin umbiegen und andrücken.



Schritt 4: Das Windrispenband über die Rändelschraube vorspannen und mit einem Maulschlüssel (SW 15) anziehen.


<sup>&</sup>lt;sup>2)</sup> mit Steckbolzen Ø 12 inkl. Sicherungssplit

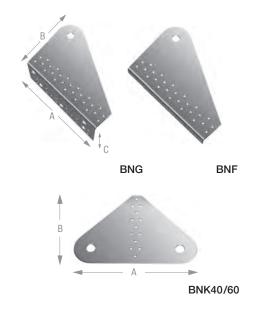
<sup>&</sup>lt;sup>9</sup> für Anschlüsse der BAN158025 mus ein zusätzlicher CLIPS-20 (oder 2 x M5 in 8.8) eingebaut werden. (Bitte extra bestellen)


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

# Spanngeräte - BNSP / BPST






Die Anordnung der Clips (Bolzen) erfolgt wie unten dargestellt:



#### Bandanschlüsse - BNF / BNG / BNK



**Z275** 

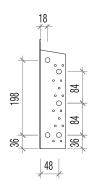


Einseitige Bandanschlüsse dienen als Endverankerungen der Windrispenbänder im Windaussteifungssystem, wobei im niederen Lastbereich BNF, im höheren BNG zum Einsatz kommen. Im Gegensatz zum BNF besitzt der BNG einen längeren vertikalen Schenkel mit zusätzlichen Löchern für Verbindungsmittel. Neben Nägeln und Schrauben gibt es die Option den BNG mit Bolzen an Sparren oder mit Ankerbolzen an Beton anzuschließen. Treffen zwei Windrispenbänder aus benachbarten Feldern am First zusammen, können die doppelseitigen BNK Bandanschlüsse verwendet werden. Die Anbindung an die Windrispenbänder erfolgt mit BNSP oder BNKK Verbindern.

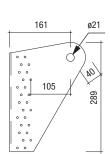
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

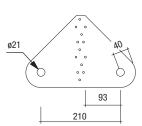
Befestigung: Die Befestigung der Bandanschlüsse am Holz erfolgt für das System 25 mit CNA3,1x40 Kammnägeln. Das System 40/60 wird mit CNA4,0xl Kammnägeln oder CSA5,0xl Verbinderschrauben angeschlossen.




#### Produktabmessungen


Tabelle 1

| Art. Nr.   |     | Abmessu | ıng [mm] |   | Löcher o      | berseitig | Löcher im S | Schenkel |
|------------|-----|---------|----------|---|---------------|-----------|-------------|----------|
|            | A B |         | С        | t | Ø [mm] Anzahl |           | Ø [mm]      | Anzahl   |
| BNF40-B    | 262 | 198     | 15       | 2 | 5; 21         | 26; 1     | _           | -        |
| BNG60-B    | 262 | 198     | 69       | 3 | 5; 21         | 26; 1     | 5; 13       | 14; 5    |
| BNK40/60-B | 290 | 190     | -        | 2 | 5; 21         | 13; 2     | -           | -        |






#### BNG60 und BNF40



#### BNK40/60



### Bandanschlüsse - BNF / BNG / BNK

# **SIMPSON Strong-Tie**

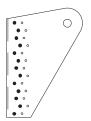
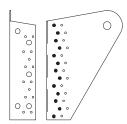
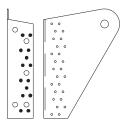

#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

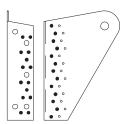

| Bandanschluss | Nagelbild | Nägel oder Bolzen |    | Holzbreite <sub>min</sub> | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub> [kN]; min. von |      |      |      |      |      | min. von  |      |                         |      |  |       |
|---------------|-----------|-------------------|----|---------------------------|---------------------------------------------------------------------------|------|------|------|------|------|-----------|------|-------------------------|------|--|-------|
|               |           | Anzahl            |    | A                         |                                                                           |      |      |      |      | ho   | i oinom / | Holz | swinkel v               | ıon. |  | Stahl |
|               |           | seitlich oben     |    | Тур                       | [mm]                                                                      | 30°  | 35°  | 40°  | 45°  | 50°  | 55°       | 60°  |                         |      |  |       |
| BNF40-B       | 1         | -                 | 13 | CNA4,0x50                 | 58                                                                        | 26,6 | 26,3 | 24,4 | 35,6 | 36,8 | 35,1      | 31,7 | 22,9 / k <sub>mod</sub> |      |  |       |
|               | 2         |                   | 13 | CNA4,0x50                 | 58                                                                        | 10,9 | 23,8 | 29,4 | 31,9 | 39,6 | 32,0      | 27,7 |                         |      |  |       |
|               | 3         | 14                |    | CNA4,0x50                 | 50                                                                        | 15,0 | 19,5 | 19,7 | 26,8 | 31,6 | 31,0      | 24,7 |                         |      |  |       |
| BNG60-B       | 4         | 14                | 13 | CNA4,0x50                 | 58                                                                        | 44,2 | 39,8 | 33,4 | 35,4 | 36,4 | 37,5      | 35,7 | $34,3 / k_{mod}$        |      |  |       |
|               | 5         | 3                 | -  | M 12 bolts 1)             | 58                                                                        | 11,9 | 12,5 | 13,4 | 14,5 | 16,0 | 15,7      | 12,8 |                         |      |  |       |
|               | 6 Beton   | 2                 | -  | BoAX-II M 12 1)           | -                                                                         | 8,5  | 9,2  | 10,0 | 11,0 | 12,3 | 13,2      | 10,5 |                         |      |  |       |

<sup>1)</sup> mit U-Scheibe 40 x 50 x 10

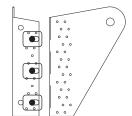

1 BNF40; 13 CNA



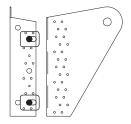
2 BNG60; 13 CNA




3 BNG60; 14 CNA



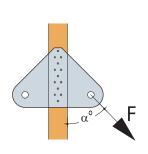

4 BNG60; 13 +14 CNA

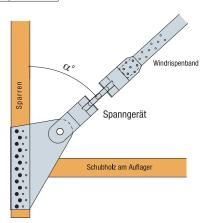

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.



5 BNG60; 3 Bolzen



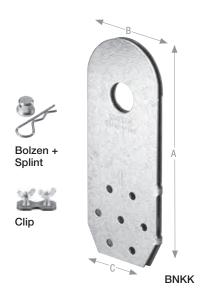

6 BNG60; 2 Bolzen




### Charakteristische Werte der Tragfähigkeit

Tabelle 3

| Art. Nr.   | Abmessungen und<br>Verbindungsmittel | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub> [kN];<br>bei Anschlusswinkel [°] |      |      |      |      |      |      |  |  |  |  |
|------------|--------------------------------------|---------------------------------------------------------------------------------------------|------|------|------|------|------|------|--|--|--|--|
|            |                                      | 30°                                                                                         | 35°  | 40°  | 45°  | 50°  | 55°  | 60°  |  |  |  |  |
| BNK40/60-B | Holzbreite ≥ 80 mm<br>13 x CNA4,0x50 | 17,7                                                                                        | 19,6 | 21,8 | 24,1 | 26,6 | 28,8 | 27,6 |  |  |  |  |
|            | Holzbreite ≥ 60 mm<br>5 x CNA4,0x50  | 7,4                                                                                         | 8,0  | 8,8  | 9,6  | 10,4 | 11,1 | 10,7 |  |  |  |  |






# C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

#### Bandanschlüsse - BNKK





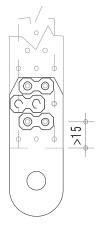
BNKK Kopplungsverbinder werden zum Anschluss von Windrispenbändern an Bandanschlüsse eingesetzt. Sie bieten keine Spannmöglichkeit.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm. Bolzen: Stahl S11SMn30 gemäß EN10277, galvanisch verzinkt

Befestigung: Die Anbindung an die Bandanschlüsse erfolgt mit dem beiliegenden Bolzen mit Sicherungssplint und an das Windrispenband mit Clips oder Schrauben. Bei Verwendung aller Schrauben bzw. des Steckbolzens ist die Tragfähigkeit des Kopplungsverbinders stets größer als die des angeschlossenen Windrispenbandes.




### Produktabmessungen

| Produktabmessungen Tabelle 1 |     |              |   |        |        |                                       |                                  |                              |  |  |  |
|------------------------------|-----|--------------|---|--------|--------|---------------------------------------|----------------------------------|------------------------------|--|--|--|
| Art. Nr.                     | Abm | nessung [mm] |   | Löcher |        | Passende Bänder                       | Mitgelieferte<br>Schrauben/Clips | Mitgelieferte<br>Steckbolzen |  |  |  |
|                              | Α   | В            | С | Ø [mm] | Anzahl |                                       |                                  |                              |  |  |  |
| BNKK40/60-B                  | 157 | 60           | 7 | 5; 21  | 7; 1   | BANxx40xx;<br>BANxx60xx;<br>BANxx80xx | 2 x BF Clips (20 mm) 2)          | 1 Ø20 <sup>1)</sup>          |  |  |  |

1) Steckbolzen inkl. Sicherungssplint

#### Anwendungshinweis:

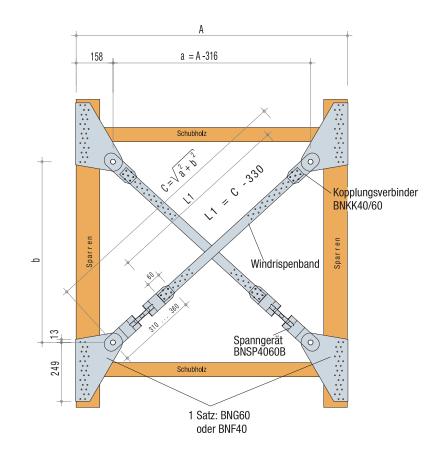
Für 80 mm breite Windrispenbänder müssen die beiden seitlichen Verbindungsstege der BNKK-Bleche getrennt werden, um einen zentrischen Anschluss zu erreichen.



BNKK40/60

<sup>&</sup>lt;sup>2)</sup> für Anschlüsse der BAN1580.... ist ein zusätzlicher BF Clips (20 mm) oder 2 x M5 in 8.8 einzubauen. Dieser muss extra bestellt werden.

# Aussteifung – **Systemübersicht**


# SIMPSON Strong-Tie

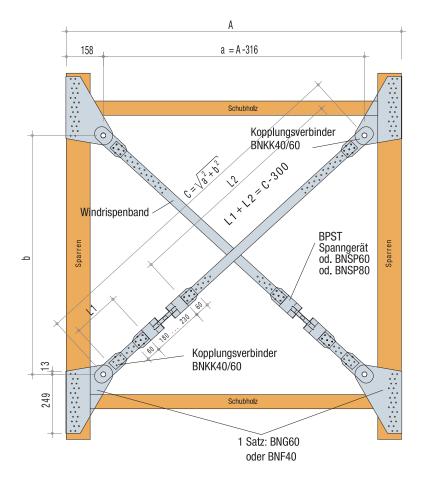
#### System 1

#### Spanngerät als End-Kopplung

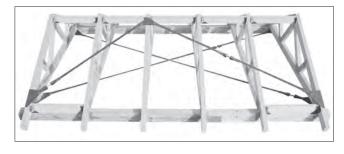
#### Für eine Auskreuzung werden benötigt:

- 2 Satz BNG60 (oder BNF40)
- 2 Stück BNSP4060B
- 2 Stück Kopplungsverbinder BNKK40/60
- Windrispenband 40er oder 60er oder 80er



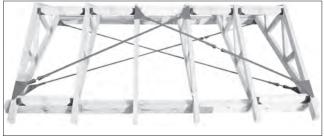

#### System 2

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

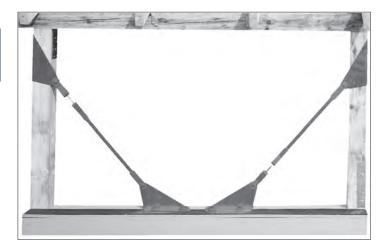

#### Spanngerät beliebig in der Auskreuzung

#### Für eine Auskreuzung werden benötigt:

- 2 Satz BNG60 (oder BNF40)
- 2 Stück BPST (BNSP60, BNSP80)
- 4 Stück Kopplungsverbinder BNKK40/60
- Windrispenband 40er oder 60er oder 80er



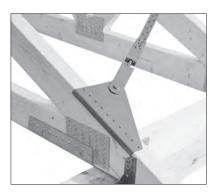

Aussteifung, Lochbänder




Aussteifung – Anwendungsbeispiele

Dachaussteifung mit Bandanschlüssen BNF am Traufpunkt und Bandanschluss BNK am Firstpunkt




Dachaussteifung mit Bandanschlüssen BNG an Trauf- und Firstpunkten



Wandaussteifung mit Bandanschlüssen BNG an Beton und BNF an den Eckstützen



Wandaussteifung mit Bandanschlüssen BNG oder BNF

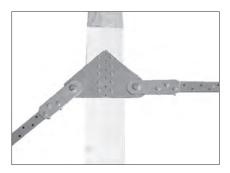


Detail am Traufpunkt: Bandanschluss BNF mit Spanngerät BNSPxxB.

Befestigung: oben



Detail am Firstpunkt: Bandanschluss BNK mit zwei Kopplungsverbindern BNKK.




Detail am Traufpunkt: Bandanschluss BNG mit Spanngerät BNSPxxB.

Befestigung: seitlich und oben

# Aussteifung – Anwendungsbeispiele





Detail am Firstpunkt: Bandanschluss BNF mit zwei Kopplungsverbindern BNKK.



Detail am Traufpunkt: Bandanschluss BNG mit Spanngerät BNSPxxB.

Befestigung: seitlich mit Bolzen Sparren gegen Kippen durch Verblockung gesichert.



Detail am Firstpunkt:

Bandanschluss BNF mit zwei
Kopplungsverbindern BNKK. Sparren
gegen Kippen durch Verblockung gesichert.



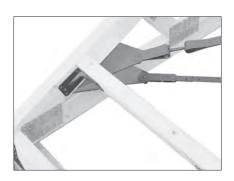

Detail am Traufpunkt:

Bandanschluss BNF mit Spanngerät

BNSPxxB. Von unten in Deckenebene.

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.




Detail am Traufpunkt:

Bandanschluss BNG an Ober- und
Untergrurt eines Nagelplattenbinders.



Bandanschluss BNG mit Spanngerät BNSPxxB. **Befestigung:** Seitlich mit Bolzen am Sparren.

Detail am Traufpunkt:



Detail am Traufpunkt: Bandanschluss BNG an Ober- und Untergurt eines Nagelplattenbinders.



Bandanschluss BNF mit Kopplungsverbinder BNKK an Stütze. Die Abkantung wurde in die Stütze eingeschlitzt.

Detail an einer breiten Eckstütze:



Detail am Fundament: Bandanschluss BNG an Beton.

**Befestigung:** Ankerbolzen M12 mit U-Scheibe 50x50x10

# **SIMPSON** Strong-Tie



BNW Windverbandanschlüsse ermöglichen einen flexiblen Anschluss von Stahldiagonalen z. B. in einer Holzhallenkonstruktion. Die Verbinder werden in die Dachträger eingeschlitzt und mit Stabdübeln angeschlossen.

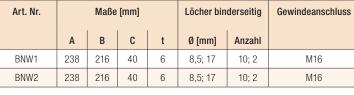
Material: Anschlussbleche: S250 GD + Z275 gemäß DIN EN10346.

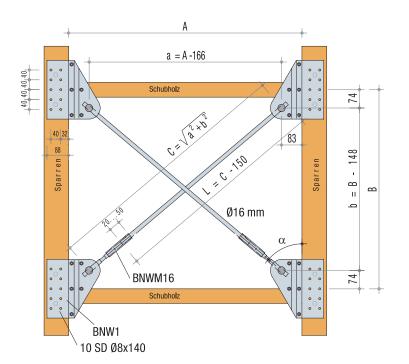
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm. Bolzen: Stahl S11SMn30 gemäß EN10277, galvanisch verzinkt.

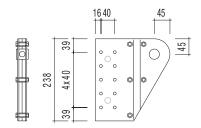
Befestigung: Der Anschluss an das Holz erfolgt über 10 Stabdübel Ø8 x 140 mm. Der Zugstabanschluss erfolgt über einen Quergewindebolzen M16 im Verbinder. An diesen Bolzen werden über Adapter und Spannschlösser die Windrispenbänder oder Rundstahldiagonalen angeschlossen.









### Produktabmessungen

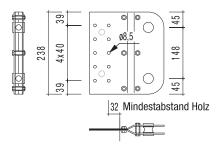

Aussteifung, Lochbänder

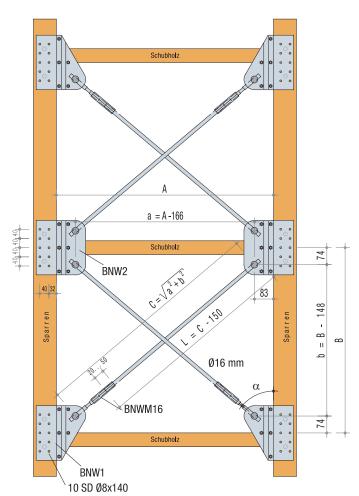
Tabelle 1 Maße [mm] Löcher binderseitig Art. Nr. Gewindeanschluss Α C Ø [mm] Anzahl BNW1 238 216 40 6 8,5; 17 10; 2 M16 BNW2 238 216 40 6 8,5; 17 10; 2 M16










#### System 1

#### Für eine Auskreuzung werden benötigt:

- 4 Stück BNW1
- 2 Stück BNWM16
- 40 Stück SD Ø8x140
- 2 Stück Rundstahl Ø16 mit beidseitigem Rechtsgewinde

### Windverbandanschlüsse - BNW





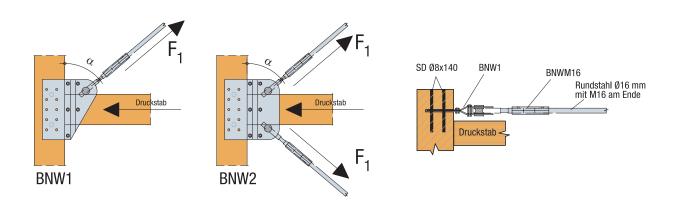
#### System 2

#### Für zwei zusammenhängende Auskreuzungen werden benötigt:

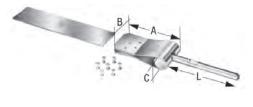
- 4 Stück BNW1
- 2 Stück BNW2
- 4 Stück BNWM16
- 60 Stück SD Ø8x140
- 4 Stück Rundstahl Ø16 mit beidseitigem Rechtsgewinde

#### Anwendungshinweis:

Die Quergewindebolzen der BNW1 und BNW2 besitzen immer ein M16 Rechtsgewinde. Kommen 16 mm Rundstäbe zum Einsatz, können diese an einem Ende direkt in den Verbandanschluss eingedreht werden, am anderen Ende wird der Rundstab an das Spannschloss BNWM16 (siehe Skizze und folgende Seiten) angeschlossen. Sollen 12 mm Rundstahldiagonalen verwendet werden, müssen diese an beiden Enden mit dem Spannschloss und Adapterstück BNWM12 an die Verbandanschlüsse geschraubt werden.


#### Charakteristische Werte der Tragfähigkeit

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.


Tabelle 2

| Art. Nr. | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub> [kN]; min von |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |      |      |                         |
|----------|--------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|------|-------------------------|
|          |                                                                          | Holz |      |      |      |      |      |      |      |      |      |      | Stahl |      |      |      |      |      |      |                         |
|          | bei einem Anschlusswinkel von                                            |      |      |      |      |      |      |      |      |      |      |      |       |      |      |      |      |      |      |                         |
|          | 0°                                                                       | 5°   | 10°  | 15°  | 20°  | 25°  | 30°  | 35°  | 40°  | 45°  | 50°  | 55°  | 60°   | 65°  | 70°  | 75°  | 80°  | 85°  | 90°  |                         |
| BNW1     | 22,8                                                                     | 23,4 | 24,1 | 25,1 | 26,4 | 28,1 | 30,2 | 33,0 | 36,6 | 41,5 | 48,2 | 58,2 | 74,0  | 65,5 | 52,9 | 44,5 | 38,6 | 34,3 | 31,0 | 51,9 / k <sub>mod</sub> |
| BNW2     | _                                                                        | _    | _    | _    | 96,1 | 90,8 | 84,9 | 78,6 | 71,7 | 64,6 | 57,4 | 50,4 | 44,5  | 47,0 | 53,6 | _    | _    | _    | _    | 51,9 / k <sub>mod</sub> |

Der charakteristische Wert der Tragfähigkeit ermittelt sich aus dem Minimum der Tragfähigkeit für den Holzanschluss und der Stahltragfähigkeit. Die Werte der Tragfähigkeit für den BNW2 gelten je Zugstab, bei gleichzeitiger und nahezu gleicher Belastung. Treten die Lasten nur einseitig, oder in unterschiedlicher Größe auf, gelten für  $\alpha < 53^{\circ}$  die Werte für den einseitigen Anschluss BNW1. Die Stahltragfähigkeit muss auch hier in Vergleich gebracht werden. Die angegebenen Werte gelten für 8 x 140 mm Stabdübel



#### Windverbandanschlüsse – BNWA / BNWM



**BNWA** 



BNWA Verbindungsstücke werden für die Befestigung von Windrispenband an BNW Verbandanschlüsse verwendet. Sie bestehen aus der Anschlusslasche mit Schrauben M5, einem Rundstahl mit Quergewindebohrung und einer rechts/links Gewindestange als Spannschloss. Bei Verwendung aller Schrauben ist die Tragfähigkeit dieses Windrispenbandanschlusses stets größer als die des angeschlossenen Bandes. BNWM Verbindungsstücke sind zum Anschluss von Ø12 mm bzw. Ø16 mm Rundstäben an die BNW Verbandanschlüsse geeignet. Diese bestehen aus einer 16 mm rechts/links Gewindestange und einer Spannschlossmutter.

Material: Anschlusslasche: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm. Gewindestäbe: S355J2G3C+C gemäß EN10278, galvanisch verzinkt. Spannmutter: Stahl 11SMn30 gemäß EN10277, galvanisch verzinkt.

Befestigung: Der Anschluss erfolgt durch Zusammenschrauben der Komponenten miteinander.







#### Produktabmessungen

| Art. Nr. |     | Abmessı | ıng [mm] |     | Löcher in | Lasche | Gewindeanschluss |
|----------|-----|---------|----------|-----|-----------|--------|------------------|
|          | A   | В       | С        | L   | Ø [mm]    | Anzahl |                  |
| BNWA     | 140 | 60      | 35       | 165 | 5         | 7      | M16              |

#### Produktabmessungen

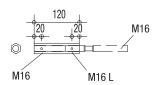
Tabelle 2

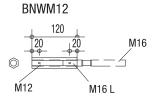
Tabelle 1

| Art. Nr.  | Längen [m               | Gewindeanschluss in<br>Spannschlossmutter |              |               |  |  |  |
|-----------|-------------------------|-------------------------------------------|--------------|---------------|--|--|--|
|           | Gewindestange M16 li/re | Spannschlossmutter                        | Linksgewinde | Rechtsgewinde |  |  |  |
| BNWM 16-B | 165                     | 120                                       | M16          | M16           |  |  |  |
| BNWM 12-B | 165                     | 120                                       | M16          | M12           |  |  |  |

#### Charakteristische Werte der Tragfähigkeit

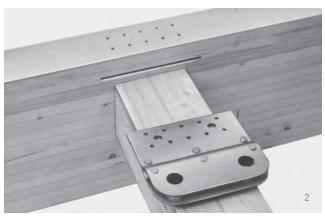
Tabelle 3


| Art. Nr.  | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub> [kN] |
|-----------|-----------------------------------------------------------------|
| BNWM 16-B | 51,9 / k <sub>mod</sub>                                         |
| BNWM 12-B | 29,1 / k <sub>mod</sub>                                         |


# **BNWA** M16 M16 L

#### BNWM16

138


7 Ø5 mm





# Windverbandanschlüsse – **Anwendungsbeispiele**











C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.













# Lochbleche, Sparrenanschlüsse

| Allgemeines                   | 181     |
|-------------------------------|---------|
| Lochbleche – NP               | 182-183 |
| Zug- und Scherplatten – NPB   | 184-191 |
| Sparrenfußverbinder – SF / SH | 192-193 |
| Sparrenhalter – SHR / SHH     | 194-195 |



#### Allgemeines



Für NP Lochbleche gibt es viele Anwendungsmöglichkeiten, mit denen sich Anschlüsse einfach realisieren lassen. Zusammen mit Simpson Strong-Tie® CNA Kammnägeln oder CSA Schrauben dürfen alle Lochbleche als dicke Bleche gemäß EC5 + NA berechnet werden. Somit können auch für die 1,5 mm Bleche die höheren Werte der Nageltragfähigkeiten in Ansatz gebracht werden. Lochbleche können Zugkräfte übertragen. Es wird empfohlen 2 Lochbleche je Anschluss zu verwenden, wobei die Hölzer im Anschlussbereich die gleiche Dicke aufweisen müssen. Bei einseitigen Anschlüssen ist die Exzentrizität zu berücksichtigen.

#### Berechnung von zugbelasteten Lochblechverbindungen

Als charakteristische Zugfestigkeit darf für die Bleche gerechnet werden mit:

Für Stahl S250GD + Z275.:  $R_k = A_{ef} \times 297 \text{ N/mm}^2$ 

Der Bemessungswert ist zu errechnen mit  $\gamma$  = 1,3 und der Nettoquerschnittsfläche  $A_{\rm sf}$  = A x t x 0,75

Auch Anschlüsse, die nicht ausschließlich auf Zug beansprucht werden, z.B. Anschlüsse von Diagonalen in Fachwerkbindern, sind mit den Lochblechen realisierbar, hier ist ein Einzelnachweis durch den Statiker erforderlich.

#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC

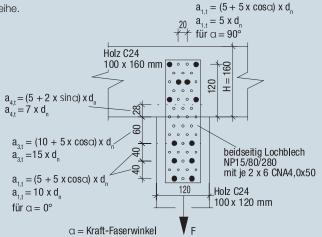
Hölzer im Querschnitt 100 x 160 mm und 100 x 120 mm, gewählte Lochbleche NP15/80/240 mit je 2 x 6 CNA4,0x50 Kammnägeln mit  $R_{lat,k} = 2,22$  kN. Belastung:  $F_{1,d} = 14,5$  kN; NKL.2; KLED: kurz  $\Rightarrow$   $k_{mod} = 0,9$ 

Die Anzahl der Nägel in dem unteren Holz ist mit  $\rm n_{\rm ef}$  , EC5; (8.17), zu bestimmen.

Das  $\rm n_{\rm ef}$  bezieht sich dabei auf die wirksame Nagelanzahl in einer Reihe.

$$n_{ef} = 2 \times 2 \times 3^{0.85} = 10.2$$

**Nachweis Nägel:**  $R_{1,d} = 10,2 \times 2,22 \text{ kN} \times 0,9 / 1,3 = 15,7 \text{ kN}$ 


Nachweis Lochblech (2 Stück)

$$A_{ef} = 2 \times 80 \times 1,5 \times 0,75 = 180 \text{ mm}^2$$

$$R_{1.Bl.d} = 180 \times 297 \text{ N/mm}^2 / 1,3 = 41,2 \text{ kN}$$

Nachweis CNA Kammnägel:  $\frac{14,5}{15,7} = 0.92 \le 1.0 \Rightarrow Ok$ 

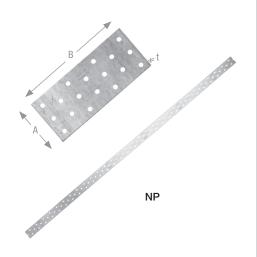
**Nachweis:** 
$$\frac{14,5}{41,2} = 0.35 \le 1.0 \Rightarrow 0k$$



Querzugnachweis nach EC5 8.1.4

Im querliegenden Holz 100 x 160 mm ist der oberste Nagel im Abstand zum belasteten

Rand von 120 mm angeordnet.  $h_a = 120$  mm; h = 160 mm; b = 100 mm


$$F_{90,RK} = 14 \times b \times \sqrt{\frac{h_e}{1 - \frac{h_e}{h}}} = 30672 \text{ N} = 30,7 \text{ kN}$$

Siehe auch EC5; NA 6.8.2.

Das Nagelbild ist symmetrisch zur Wirkungslinie der Kraft anzuordnen.

#### Lochbleche - NP





NP Lochbleche und Lochblechstreifen werden aus sendzimirverzinkten Blechen in den Dicken 1,5 mm, 2,0 mm, 2,5 mm und 3,0 mm hergestellt. Der Lochdurchmesser beträgt 5 mm.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz:  $275~g/m^2$  beidseitig - entsprechend einer Zinkschichtdicke von ca.  $20~\mu m$ .

**Befestigung:** Der Anschluss an das Holz erfolgt mit CNA4,0x $\ell$  Kammnägeln oder CSA5,0x $\ell$  Schrauben.









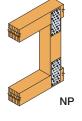




DoP-h10/0

Diverse Größen

Einige Typen


#### Produktabmessungen

| Га |  |  |  |
|----|--|--|--|
|    |  |  |  |
|    |  |  |  |

| Art. Nr.     | Ab  | Löcher |     |   |
|--------------|-----|--------|-----|---|
|              | Α   | В      | t   | Ø |
| NP15/40/120  |     | 120    |     |   |
| NP15/40/160  | 40  | 160    | 1,5 | 5 |
| NP15/40/360  |     | 360    |     |   |
| NP15/60/140  |     | 140    |     | 5 |
| NP15/60/160  |     | 160    |     | 5 |
| NP15/60/180  |     | 180    |     | 5 |
| NP15/60/200  |     | 200    |     | 5 |
| NP15/60/220  | 60  | 220    | 1,5 | 5 |
| NP15/60/240  |     | 240    |     | 5 |
| NP15/60/300  |     | 300    |     | 5 |
| NP15/60/420  |     | 420    |     | 5 |
| NP15/60/500  |     | 500    |     | 5 |
| NP15/80/100  |     | 100    |     | 5 |
| NP15/80/140  |     | 140    | 1,5 | 5 |
| NP15/80/200  |     | 200    |     | 5 |
| NP15/80/220  |     | 220    |     | 5 |
| NP15/80/240  | 80  | 240    |     | 5 |
| NP15/80/260  |     | 260    |     | 5 |
| NP15/80/300  |     | 300    |     | 5 |
| NP15/80/380  |     | 380    |     | 5 |
| NP15/80/420  |     | 420    |     | 5 |
| NP15/100/180 |     | 180    |     | 5 |
| NP15/100/200 |     | 200    |     | 5 |
| NP15/100/240 | 100 | 240    | 1,5 | 5 |
| NP15/100/300 |     | 300    |     | 5 |
| NP15/100/380 |     | 380    |     | 5 |
| NP15/120/220 |     | 220    |     | 5 |
| NP15/120/240 |     | 240    |     | 5 |
| NP15/120/300 | 120 | 300    | 1,5 | 5 |
| NP15/120/340 |     | 340    |     | 5 |
| NP15/120/380 |     | 380    |     | 5 |

#### Produktabmessungen

| Art. Nr.     | Abmessung [mm] |     |     | Löcher |
|--------------|----------------|-----|-----|--------|
|              | Α              | В   | t   | Ø      |
| NP15/140/140 |                | 140 |     | 5      |
| NP15/140/180 |                | 180 |     | 5      |
| NP15/140/200 | 140            | 200 | 1,5 | 5      |
| NP15/140/220 | 140            | 220 | 1,3 | 5      |
| NP15/140/260 |                | 260 |     | 5      |
| NP15/140/300 |                | 300 |     | 5      |
| NP15/160/180 |                | 180 |     | 5      |
| NP15/160/220 |                | 220 |     | 5      |
| NP15/160/240 |                | 240 | 1,5 | 5      |
| NP15/160/340 | 160            | 340 |     | 5      |
| NP15/160/380 |                | 380 |     | 5      |
| NP15/160/400 |                | 400 |     | 5      |
| NP15/160/420 |                | 420 |     | 5      |
| NP15/180/180 | 180            | 180 | 1,5 | 5      |
| NP15/200/260 | 200            | 260 | 1,5 | 5      |
| NP15/220/220 |                | 220 | 1,5 | 5      |
| NP15/220/260 | 220            | 260 |     | 5      |
| NP15/220/300 |                | 300 |     | 5      |
| NP15/240/180 |                | 180 |     | 5      |
| NP15/240/220 | 240            | 220 | 1.5 | 5      |
| NP15/240/260 | 240            | 260 | 1,5 | 5      |
| NP15/240/300 |                | 300 |     | 5      |
| NP15/260/260 | 260            | 260 | 1,5 | 5      |
| NP15/280/220 |                | 220 |     | 5      |
| NP15/280/260 | 280            | 260 | 1,5 | 5      |
| NP15/280/300 |                | 300 |     | 5      |





#### Lochbleche - NP

#### SIMPSON Strong-Tie

#### Produktabmessungen

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

| 1 | Гa | h | Д | lle | 9 3        |
|---|----|---|---|-----|------------|
| П | а  | N | ᆫ | ШE  | <i>;</i> . |

| TTOGGITT     | Tabelle 3 |            |     |        |
|--------------|-----------|------------|-----|--------|
| Art. Nr.     | Ab        | messung [m | m]  | Löcher |
|              | Α         | В          | t   | Ø      |
| NP20/40/120  | 40        | 120        | 0.0 | 5      |
| NP20/40/160  | 40        | 160        | 2,0 | 5      |
| NP20/50/200  | 50        | 200        | 2,0 | 5      |
| NP20/60/140  |           | 140        |     | 5      |
| NP20/60/200  | 60        | 200        | 2,0 | 5      |
| NP20/60/240  |           | 240        |     | 5      |
| NP20/80/200  |           | 200        |     | 5      |
| NP20/80/240  | 80        | 240        | 2,0 | 5      |
| NP20/80/300  |           | 300        |     | 5      |
| NP20/100/140 |           | 140        |     | 5      |
| NP20/100/200 |           | 200        | 2,0 | 5      |
| NP20/100/240 |           | 240        |     | 5      |
| NP20/100/260 | 100       | 260        |     | 5      |
| NP20/100/300 |           | 300        |     | 5      |
| NP20/100/400 |           | 400        |     | 5      |
| NP20/100/500 |           | 500        |     | 5      |
| NP20/120/200 |           | 200        |     | 5      |
| NP20/120/240 |           | 240        |     | 5      |
| NP20/120/260 | 120       | 260        | 2,0 | 5      |
| NP20/120/300 |           | 300        |     | 5      |
| NP20/120/400 |           | 400        |     | 5      |
| NP20/140/400 | 140       | 400        | 2,0 | 5      |
| NP20/160/300 | 160       | 300        | 2,0 | 5      |
| NP20/160/400 | 100       | 400        | ۷,0 | 5      |
| NP20/200/300 | 200       | 300        | 2,0 | 5      |

# 20

## Zuschnittmuster für Lochbleche 0

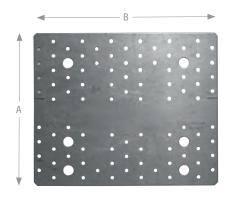
#### Produktabmessungen

Tabelle 4

| Art. Nr.          | Ab  | Löcher |     |   |
|-------------------|-----|--------|-----|---|
|                   | Α   | В      | t   | Ø |
| NP20/40/1200      | 40  | 1200   | 2,0 | 5 |
| NP20/60/1200      | 60  | 1200   | 2,0 | 5 |
| NP20/80/1200      | 80  | 1200   | 2,0 | 5 |
| NP20/100/1200     | 100 | 1200   | 2,0 | 5 |
| NP20/120/1200     | 120 | 1200   | 2,0 | 5 |
| NP20/140/1200     | 140 | 1200   | 2,0 | 5 |
| NP20/160/1200     | 160 | 1200   | 2,0 | 5 |
| NP20/200/1200     | 200 | 1200   | 2,0 | 5 |
| NP20/220/1200-B   | 220 | 1200   | 2,0 | 5 |
| NP20/240/1200-B   | 240 | 1200   | 2,0 | 5 |
| NP20/260/1200-B   | 260 | 1200   | 2,0 | 5 |
| NP20/280/1200-B   | 280 | 1200   | 2,0 | 5 |
| NP20/300/1200-B   | 300 | 1200   | 2,0 | 5 |
| NP25/40/1200-B    | 40  | 1200   | 2,5 | 5 |
| NP25/60/1200-B    | 60  | 1200   | 2,5 | 5 |
| NP25/80/1200      | 80  | 1200   | 2,5 | 5 |
| NP25/100/1200-B   | 100 | 1200   | 2,5 | 5 |
| NP25/120/1200-B   | 120 | 1200   | 2,5 | 5 |
| NP25/140/1200     | 140 | 1200   | 2,5 | 5 |
| NP25/160/1200     | 160 | 1200   | 2,5 | 5 |
| NP25/180/1200-B   | 180 | 1200   | 2,5 | 5 |
| NP25/200/1200-B   | 200 | 1200   | 2,5 | 5 |
| NP25/220/1200-B * | 220 | 1200   | 2,5 | 5 |
| NP25/240/1200-B * | 240 | 1200   | 2,5 | 5 |
| NP25/260/1200-B * | 260 | 1200   | 2,5 | 5 |
| NP25/300/1200-B   | 300 | 1200   | 2,5 | 5 |
| NP20/620/1240     | 620 | 1240   | 2,0 | 5 |
| NP25/620/1240     | 620 | 1240   | 2,5 | 5 |
| NP30/620/1240     | 620 | 1240   | 3,0 | 5 |

<sup>\*</sup> keine Lagerware

#### Anwendungshinweis:


Lochbleche sind für vielfältige Einsatzzwecke geeignet. Bei Bedarf fertigen wir Lochbleche in Sondergrößen und Formen nach Ihren Vorgaben. Für eine korrekte Preisanfrage sind vermaßte Skizzen/Zeichnungen notwendig.

#### Bitte beachten:

Die Lochblechgröße wird mit den Abmessungen A x B x t festgelegt. A und B bestimmen neben der Größe die Richtung des Lochbildes, t beschreibt die Blechdicke.

#### Zug- und Scherplatten - NPB





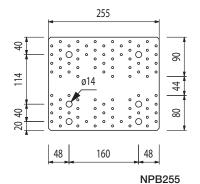
NPB255

NPB Platten wurden vorrangig zur Anwendung mit Brettsperrholz entwickelt und sind sehr gut zur Aufnahme von größeren Zug- bzw. Scherkräften an Bauteilstößen geeignet.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

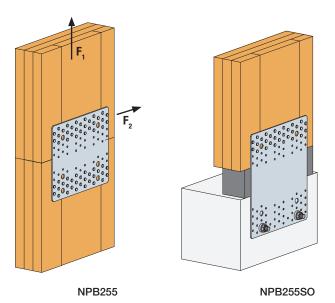
Tabelle 1

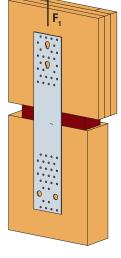
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.


Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln, CSA5,0xl Schrauben oder ZYKT39 Verbindern. Zur Befestigung an Beton werden Ankerbolzen M12 oder M16 verwendet.






| Art. Nr.    | Abmessung [mm] |     |         | Löcher           |         |               |        |  |
|-------------|----------------|-----|---------|------------------|---------|---------------|--------|--|
|             |                |     | Bereic  | h oben           | Bereicl | Bereich unten |        |  |
|             | Α              | В   | t       | Ø                | Anzahl  | Ø             | Anzahl |  |
| NPB255      | 214            | 255 | 3,0     | 5                | 52      | 5             | 41     |  |
| INI B233    | 214            | 233 | 3,0     | 14               | 2       | 14            | 4      |  |
| NPB255S0    | 294            | 255 | 3,0     | 5                | 56      | 5             | 41     |  |
| NPB20000    | 294            | 200 | 3,0     | 14               | 2       | 14            | 4      |  |
| NPB60400    | 60             | 400 | 2.0     | 5                | 49      | -             | -      |  |
| NPB00400    | 00             | 400 | 2,0     | 14               | 1       | -             | -      |  |
| NPB100540   | 100            | E40 | 540 3,0 | 5                | 26      | 5             | 28     |  |
| NFB100540   | 100            | 340 |         | 17 <sup>1)</sup> | 2       | 14            | 2      |  |
| NPB140540   | 140            | 540 | 2.0     | 5                | 36      | 5             | 36     |  |
| NPD140340   | 140            | 340 | 3,0     | 17 <sup>1)</sup> | 2       | 17            | 2      |  |
| NPB20100200 | 100            | 200 | 2,0     | 5                | 45      | -             | -      |  |
| NPB30200300 | 200            | 300 | 3,0     | 5                | 143     | -             | -      |  |

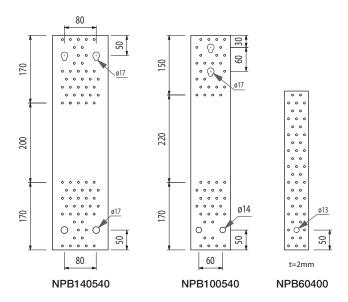

<sup>1)</sup> Schlüsselloch passend für ZYKT39



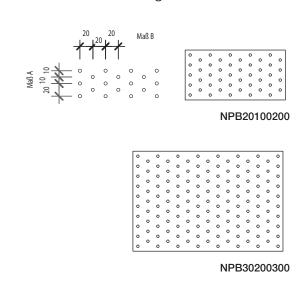
255 194 124 9 8 48 160 48

NPB255SO



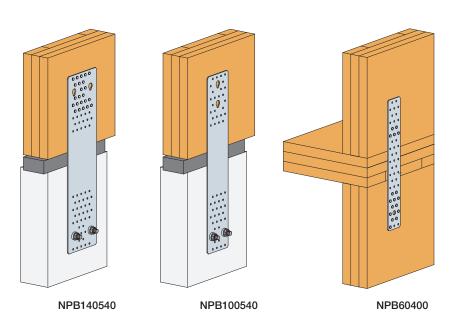


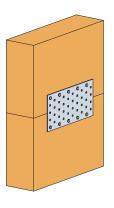

NPB140540


#### Zug- und Scherplatten – NPB

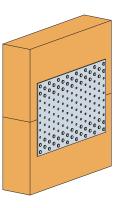


#### Positionen der Bolzenlöcher und Lochbilder





#### Ausrichtung Lochbild Ø5 mm




#### Anwendungsbeispiele

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.





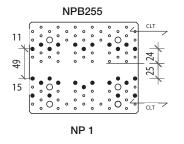
NPB20100200

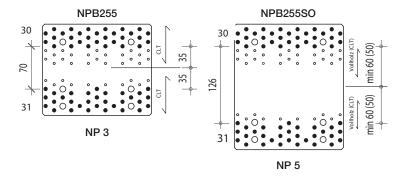


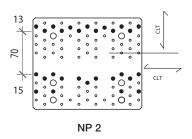
NPB30200300

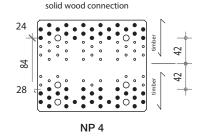
Lochbleche, Sparrenanschlüsse

#### Zug- und Scherplatten - NPB


#### Anschlussbilder Holz an Holz

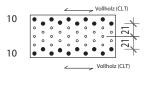

#### Anwendungshinweise:


Die aufgeführten Anschlussbilder berücksichtigen die Anforderungen der Verbindungsmittel an die Mindestrandabstände beanspruchter Hirnholzenden bzw. beanspruchter Ränder quer zur Faser. Anschlussbilder, die für Hölzer mit beanspruchtem Hirnholzende geeignet sind, können auch für Hölzer mit beanspruchtem Rand quer zur Faser eingesetzt werden. Die entsprechenden Anschlussbilder dürfen gemäß ETA-06/0106 gleichermaßen für CLT und Nadelvollholz verwendet

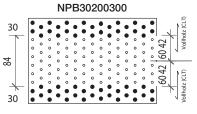

Frei wählbare Nagelanschlüsse sind mit mindestens 4 Nägeln anzuschließen.

Verschiebungsmodulwerte kser können der ETA-06/0106 entnommen werden.

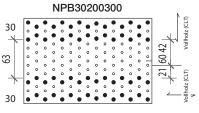










#### NPB20100300



NP 14



**NP 15** 



**NP 16** 

#### Zug- und Scherplatten – NPB



#### Statische Werte- Anschlüsse Holz an Holz

Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Charakteristi | Scrie vverte                |                             | Verbindungsmittel | 1)        | Charakteristische Wert                                           | e der Tragfähigkeit [kN]                            |
|---------------|-----------------------------|-----------------------------|-------------------|-----------|------------------------------------------------------------------|-----------------------------------------------------|
| Art. Nr.      | Anschluss bild              | Тур                         | 1                 | zahl      |                                                                  | eln oder CSA-Schrauben<br>e Anschluss <sup>3)</sup> |
|               | NP                          |                             | Bereich A         | Bereich B | R <sub>1,k</sub>                                                 | R <sub>2/3,k</sub>                                  |
| NDDOEE        | 1                           | CNA4,0x50                   | -1-1              | 15        | 23,9                                                             | 20,8                                                |
| NPB255        | 1                           | CSA5,0x50                   | 11                | 15        | 27,6                                                             | 24,0                                                |
| NPB255        | 2                           | CNA4,0x50                   | 13                | 15        | 28,3                                                             | 19,4                                                |
| INPDZOO       | 2                           | CSA5,0x50                   |                   |           | 32,6                                                             | 22,3                                                |
| NPB255        | 3                           | CNA4,0x50                   | 30                | 31        | 66,6                                                             | 34,0                                                |
| NPB255        | 3                           | CSA5,0x50                   | 30                | 31        | 78,9                                                             | 40,2                                                |
| NDDOCE        | 4                           | CNA4,0x50                   | 04                | 28        | 53,3                                                             | 27,8                                                |
| NPB255        | 4                           | CSA5,0x50                   | 24                | 28        | 63,1                                                             | 32,9                                                |
| NPB255S0      | 5                           | CNA4,0x50                   | 30                | 31        | 66,5                                                             | 25,0                                                |
| NPD2000U      | 5                           | CSA5,0x50                   | 30                | 31        | 78,9                                                             | 29,7                                                |
| NPB20100200   | 14                          | CNA4,0x50                   | 10                | 10        | 22,2                                                             | 15,8                                                |
| NPB20100200   | 14                          | CSA5,0x50                   | 10                | 10        | 26,3                                                             | 18,7                                                |
| NPB30200300   | 15                          | CNA4,0x50                   | 30                | 30        | 66,5                                                             | 33,1                                                |
| NPB30200300   | 15                          | CSA5,0x50                   | 30                | 30        | 78,9                                                             | 39,2                                                |
| NPB30200300   | 16                          | CNA4,0x50                   | 30                | 30        | 66,5                                                             | 35,5                                                |
| NI B30200300  | 10                          | CSA5,0x50                   | 30                | 30        | 78,9                                                             | 42,1                                                |
|               | Nagalbild                   | CNA4,0x50                   | 20                | 21        | min (26,7 /k <sub>mod</sub> ; 44,4)                              |                                                     |
| NPB60400      | Nagelbild<br>frei           | CSA5,0x50                   | 20                | 21        | min (26,7 /k <sub>mod</sub> ; 52,6)                              | -                                                   |
|               | wählbar                     | CNA4,0x ℓ<br>CSA5,0x ℓ      | ≤ 20              | ≤ 22      | min (26,7 /k <sub>mod</sub> ; $n \times R_{lat}$ ) <sup>2)</sup> |                                                     |
|               |                             | CNA4,0x50                   | 26                | 28        | min (71,3 /k <sub>mod</sub> ; 57,7)                              |                                                     |
| NPB100540     | Nagelbild<br>NPB100540 frei |                             | 26                | 28        | min (71,3 /k <sub>mod</sub> ; 68,4)                              | -                                                   |
|               | wählbar                     | CNA4,0x ℓ<br>CSA5,0x ℓ      | ≤ 26              | ≤ 28      | min (71,3 / $k_{mod}$ ; $n \times R_{lat}$ ) 2)                  |                                                     |
|               |                             | CNA4,0x50                   | 36                | 36        | min (102,5 /k <sub>mod</sub> ; 79,9)                             |                                                     |
| NPB140540     | Nagelbild<br>frei           | CSA5,0x50                   | 36                | 36        | min (102,5 /k <sub>mod</sub> ; 94,7)                             | -                                                   |
|               | wählbar                     | CNA4,0x ℓ<br>CSA5,0x ℓ ≤ 37 |                   | ≤ 36      | min (102,5 / $k_{mod}$ ; $n \times R_{tat}$ ) <sup>2)</sup>      |                                                     |

 $<sup>^{1)}</sup>$  Die erf. Randabstände der Verbindungsmittel und Faserverläufe der Hölzer sind zu beachten  $^{2)}$  R $_{lat}$  = Abscherwert der gewählten CNA Nägel oder CSA Schrauben

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

<sup>3)</sup> Die anzuschließenden Bauteile müssen gegen Verdrehen gesichert sein

#### Zug- und Scherplatten – NPB



#### Statische Werte- Anschlüsse mit ZYKT an CLT mit verschieblicher Zwischenschicht

Für Anschlüsse von Zugblechen an Vollholz, BSH und CLT sind Simpson ZYKT Verbinder mit den zugehörigen SSH Schrauben, die unter einem Winkel von 30° zur Wandoberfläche eingedreht werden, gut geeignet. Besonders bei Tragwerken mit einer verschieblichen Zwischenschicht, spielt der ZYKT seine Vorteile aus. Mit diesen Verbindern wird die Zwischenschicht nur auf Druck beansprucht während die Schrauben ausschließlich auf Zug belastet werden, die Richtung, in der sie leistungsstark sind.

Die Berechnung der ZYKT in Tabelle 3 erfolgt gem. ETA-20/1071.

Die Berechnung der Auszugswerte für die SSH Schrauben erfolgt gemäß den Veröffentlichungen von Blaß, Uibel und Beitka:

Holzbau Kalender 2004 - Selbstbohrende Holzschrauben und ihre Anwendungsmöglichkeiten und

Bemessungsvorschläge für Verbindungsmittel in Brettsperrholz – Uni Karlsruhe und

Tragfähigkeit von stiftförmigen Verbindungsmitteln in Brettsperrholz – Uni Karlsruhe

sowie von Wallner-Novak, Brettsperrholz Bemessung II proHOLZ

#### Charakteristische Werte der Tragfähigkeit

Tabelle 3

| Art. Nr.   |                   | Verbindun | gsmittel 1)            | Charakteristische Werte der Tragfähigkeit [kN] |                                                                                                                                       |
|------------|-------------------|-----------|------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|            | Bere              | ich A     | Bere                   | ich B                                          | Anschluss mit 2x ZYKT39 mit Zwischenschicht <sup>3)</sup> 1 NPB Platte je Anschluss <sup>4)</sup>                                     |
|            | Typ <sup>2)</sup> | Anzahl    | Тур                    | Anzahl                                         | R <sub>1,k</sub>                                                                                                                      |
| NPB100540  | ZYKT39            | 2         | CNA4,0x ℓ<br>CSA5,0x ℓ | ≤ 28                                           | 65,0 /k <sub>mod</sub> ; $R_{k,ZYKT}^{(3)}$ ; $n \times R_{lat}^{(5)}$                                                                |
| NFB100340  | ZYKT39            | 2         | Ankerbolzen<br>Ø 12 mm | 2                                              | min von:<br>56,8 /k <sub>mod</sub> ; R <sub>k,ZYKT</sub> <sup>3)</sup>                                                                |
| NPB140540  | ZYKT39            | 2         | CNA4,0x &<br>CSA5,0x & | ≤ 36                                           | $\frac{\text{min von:}}{102,5  / \text{k}_{\text{mod}}};  \text{R}_{\text{k,ZYKT}}^{3)};  \text{n} \times \text{R}_{\text{lat}}^{5)}$ |
| INFD14U34U | ZYKT39            | 2         | Ankerbolzen<br>Ø 16 mm | 2                                              | min von:<br>82,4 /k <sub>mod</sub> ; R <sub>k,ZYKT</sub> <sup>3)</sup>                                                                |

<sup>&</sup>lt;sup>1)</sup> Die erf. Randabstände der Verbindungsmittel und Faserverläufe der Hölzer sind zu beachten

<sup>&</sup>lt;sup>2)</sup> Mindestholzdicke für ZYKT39 = 95 mm

Bei Zwischenschichten, t<sub>zw</sub> bis 4 mm Dicke, gilt R<sub>k,ZYKT</sub> = 9,95 kN, je 1 mm dickerer Zwischenschicht t<sub>zw</sub> muss R<sub>k,ZYKT</sub> um 0,13 kN reduziert werden
 Die anzuschließenden Bauteile müssen gegen Verdrehen gesichert sein

 $<sup>^{5)}</sup>$  R $_{\rm lat}$  = Abscherwert der gewählten CNA Nägel oder CSA Schrauben

#### Bemessungsbeispiel – NPB



#### Bemessungsbeispiel NPB100540 + ZYKT39

Anschluss einer CLTWandtafel d = 100 mm an eine Betonaufkantung, (CLTAufbau ist 5lagig 20/20/20/20; Faserverlauf der Decklage ist senkrecht) CLT-Wandtafel verkleidet mit einer verschieblichen Dreischichtplatte  $t_{z_w}$  = 16 mm

#### Gewählter Verbinder:

1 Stück NPB100540 mit 2 × ZYKT39 und zugehöriger SST Schrauben 6,0 × 200 mm und 2  $\times$  Bolzenanker Ø 16 mm (Die unter 30° eingedrehten SSH Schrauben erfassen mindestens 3 Brettlagen)

#### Belastung:

Es wirkt eine Zugkraft mit  $F_{1.d} = 5.2 \text{ kN}$ ; NKL.2; KLED: kurz  $\Rightarrow$   $k_{mod} = 0.9$ Werte aus Tabelle 3:

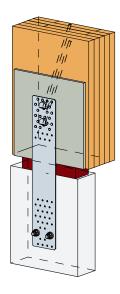
$$R_{1,k} = min \left\{ \frac{56,8 / k_{mod}}{R_{k,ZYKT}} \right\}$$

#### Berücksichtigung der Zwischenschicht:

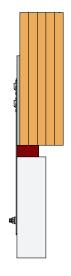
$$R_{k,ZYKT}$$
 = 9,95 kN bis  $t_{z_w}$  = 4 mm  
vorh.  $t_{z_w}$  = 16 mm  $\Rightarrow$  16-4 = 12  $\Rightarrow$  Abminderung: 12x 0,13 kN = 1,56 kN

$$R_{k,ZYKT} = 9,95 - 1,56 = 8,4 \text{ kN bei } t_{Zw} = 16 \text{ mm}$$

$$R_{1,k} = min \left\{ \frac{56,8/0,9}{8,4} \right\} = 8,4 \text{ kN}$$

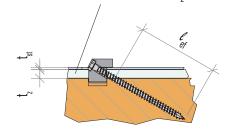

$$R_{1,d} = 8.4 \times 0.9 / 1.3 = 5.8 \text{ kN}$$

#### Nachweis:


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

$$\frac{\mathsf{F}_{1,d}}{\mathsf{R}_{1,d}} \le 1.0 \quad \frac{5.2}{5.8} = 0.9 \Longrightarrow \le 1.0 \quad \text{OK}$$

Die Verankerung im Beton ist separat nachzuweisen.



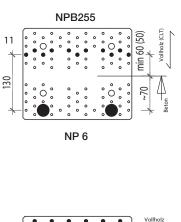

NPB100540

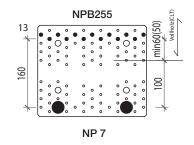


NPB100540

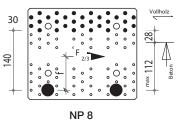


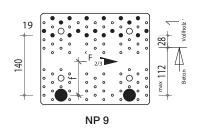


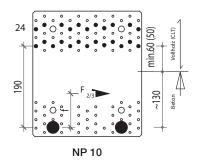

$$\ell_{\text{ef}} = \ell - (t_{\text{st}} + t_{\text{z}}) \times 2$$

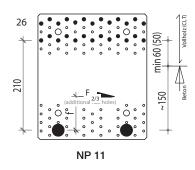

Ermittlung von  $\ell_{af}$ 

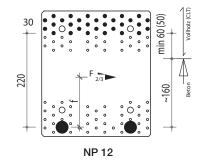
#### SIMPSON Strong-Tie

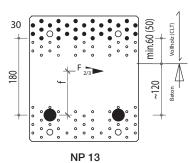

#### Zug- und Scherplatten - NPB


#### Anschlussbilder Holz an Beton














#### Zug- und Scherplatten - NPB

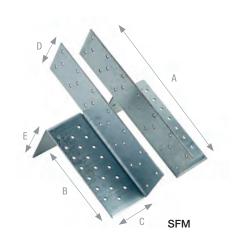


#### Statische Werte- Anschlüsse Holz an Holz

Charakteristische Werte der Tragfähigkeit

Tabelle 4

| Art. Nr.  | Anschluss-             |                        | Verbindun | gsmittel 1)                 |                                                 | Charakteristische Werte der                     | Hebelarm                                               |                                     |     |
|-----------|------------------------|------------------------|-----------|-----------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|-------------------------------------|-----|
|           | bild                   | Bereich                | ı A       | Bereich                     | В                                               |                                                 | hrauben und Ankerbolzen - 1<br>Anschluss <sub>2)</sub> | f <sup>4)</sup>                     |     |
|           |                        | Тур                    | Anzahl    | Тур                         | Anzahl                                          | R <sub>1,k</sub>                                | R <sub>2/3,k</sub>                                     | [mm]                                |     |
| NDDOFF    | NDO                    | CNA4,0x50              |           |                             |                                                 | 23,9                                            | 20,8                                                   |                                     |     |
| NPB255    | NP6                    | CSA5,0x50              | 11        |                             | 2                                               | 27,6                                            | 24,0                                                   | 120                                 |     |
| NDDOEE    | ND7                    | CNA4,0x50              | 10        |                             | 2                                               | min (37,1 /k <sub>mod</sub> ; 28,9)             | min (21,1 /k <sub>mod</sub> ; 19,3)                    | 115                                 |     |
| NPB255    | NP7                    | CSA5,0x50              | 13        | Ankerbolzen 3)              | 2                                               | min (37,1 /k <sub>mod</sub> ; 34,2)             | min (21,1 /k <sub>mod</sub> ; 22,9)                    | 115                                 |     |
| NDDOEE    | NDO                    | CNA4,0x50              | 20        | Ø 12 mm                     | 2                                               | min (37,1 /k <sub>mod</sub> ; 66,6)             | min (27,8 /k <sub>mod</sub> ; 28,4)                    | 70                                  |     |
| NPB255    | NP8                    | CSA5,0x50              | 30        |                             | 2                                               | min (37,1 /k <sub>mod</sub> ; 78,9)             | min (27,8 /k <sub>mod</sub> ; 33,7)                    | 70                                  |     |
| NPB255    | NP9                    | CNA4,0x50              | 19        |                             | 2                                               | min (37,1 /k <sub>mod</sub> ; 42,2)             | min (21,1 /k <sub>mod</sub> ; 24,0)                    | 100                                 |     |
| INPBZDD   | NP9                    | CSA5,0x50              | 19        |                             | 2                                               | min (37,1 /k <sub>mod</sub> ; 50,0)             | min (21,1 /k <sub>mod</sub> ; 28,4)                    | 100                                 |     |
| NPB255S0  | NP10                   | CNA4,0x50              | - 24      | 2 Ankerbolzen <sup>3)</sup> | 2                                               | 52,2                                            | 22,2                                                   | 120                                 |     |
| NFDZ3330  | INFIU                  | CSA5,0x50              | 24        |                             | 60,2                                            | 25,6                                            | 120                                                    |                                     |     |
| NPB255S0  | NP11                   | CNA4,0x50              | 26        |                             | oolzen 3)                                       | 56,6                                            | 21,5                                                   | 120                                 |     |
| NFDZ3330  | INFII                  | CSA5,0x50              | 20        |                             |                                                 | 65,3                                            | 24,8                                                   |                                     |     |
| NPB255S0  | NP12                   | CNA4,0x50              | 30        | Ø 12 mm 2                   |                                                 | 2                                               | min (37,1 /k <sub>mod</sub> ; 66,6)                    | min (27,8 /k <sub>mod</sub> ; 21,3) | 115 |
| NI D23330 | IVI 1Z                 | CSA5,0x50              | 30        |                             | min (37,1 /k <sub>mod</sub> ; 78,9)             | min (27,8 /k <sub>mod</sub> ; 25,2)             | 110                                                    |                                     |     |
| NPB255S0  | NP13                   | CNA4,0x50              | 30        |                             | 2                                               | min (37,1 /k <sub>mod</sub> ; 66,6)             | min (23,2 /k <sub>mod</sub> ; 25,5)                    | 100                                 |     |
| NI D23330 | IVI IO                 | CSA5,0x50              |           |                             |                                                 | min (37,1 /k <sub>mod</sub> ; 78,9)             | min (23,1 /k <sub>mod</sub> ; 30,2)                    | 100                                 |     |
|           | Non-Hellel             | CNA4,0x50              | 20        |                             |                                                 | min (20,6 /k <sub>mod</sub> ; 44,4)             |                                                        |                                     |     |
| NPB60400  | Nagelbild<br>frei      | CSA5,0x50              | 20        | Ankerbolzen 3)              | Ankerbolzen <sup>3)</sup> 1 0 12 mm             | min (20,6 /k <sub>mod</sub> ; 52,6)             | _                                                      | _                                   |     |
|           | wählbar                | CNA4,0x ℓ<br>CSA5,0x ℓ | ≤ 20      | W 12 IIIIII                 |                                                 | min (20,6/ $k_{mod}$ ; $n \times R_{lat}$ ) 3)  |                                                        |                                     |     |
|           |                        | CNA4,0x50              | 26        |                             |                                                 | min (56,8 /k <sub>mod</sub> ; 57,7)             |                                                        |                                     |     |
| NPB100540 | Nagelbild<br>frei      | CSA5,0x50              | 26        | Ankerbolzen 3)              | 2                                               | min (56,8 /k <sub>mod</sub> ; 68,4)             | _                                                      | _                                   |     |
| wählbar   | CNA4,0x &<br>CSA5,0x & | ≤ 26                   | Ø 12 mm   | _                           | min (56,8 / $k_{mod}$ ; $n \times R_{tat}$ ) 3) |                                                 |                                                        |                                     |     |
|           |                        | CNA4,0x50              | 36        |                             |                                                 | min (82,4 /k <sub>mod</sub> ; 79,9)             |                                                        |                                     |     |
| NPB140540 | Nagelbild<br>frei      | CSA5,0x50              | 36        | Ankerbolzen 3)              | 2                                               | min (82,4 /k <sub>mod</sub> ; 94,7)             | _                                                      | _                                   |     |
|           | wählbar                | CNA4,0x ℓ<br>CSA5,0x ℓ | ≤ 37      | Ø 16 mm                     | _                                               | min (82,4 / $k_{mod}$ ; $n \times R_{lat}$ ) 3) |                                                        |                                     |     |


<sup>1)</sup> Die erf. Randabstände der Verbindungsmittel und Faserverläufe der Hölzer sind zu beachten

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

 <sup>2)</sup> Die anzuschließenden Bauteile müssen gegen Verdrehen gesichert sein
 3) Rlat = Abscherwert der gewählten CNA Nägel oder CSA Schrauben
 4) Bei der Ankerbolzenbemessung für die Lastrichtung F<sub>2</sub>, muss mit dem Maß "f" ein zusätzliches Moment MZSD = f x F<sub>2/3,d</sub> nachgewiesen werden

#### Sparrenfußverbinder - SF / SH





SF/SH Sparrenfußverbinder werden satzweise (rechts + links) am Binderuntergurt und einer Fußschwelle bzw. an Sparren und Pfetten befestigt. Sie sind zur Übertragung von Normalkräften aus Binderkonstruktionen oder Sparren in schubfest verankerte Schwellen geeignet. SHLM und SHLS Schwellenhalter gewährleisten die Weiterleitung der Horizontalkräfte in eine Betondecke.

Material: Stahlsorte: S250GD + Z275 gemäß DIN EN10346.

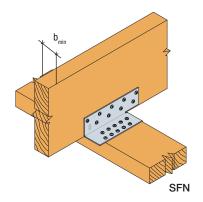
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Die Schwellenhalter werden am Beton mit Ankerbolzen, an der Schwelle mit CNA Kammnägeln oder CSA Schrauben








ETA-20-1071 DE-DoP-e20-1071

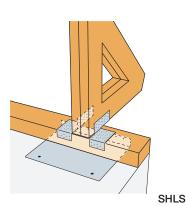

#### Produktabmessungen

Tabelle 1

| Art. Nr. |     |     | Abmessu | Löc | her |     |       |                 |
|----------|-----|-----|---------|-----|-----|-----|-------|-----------------|
|          | А   | В   | С       | D   | Е   | t   | Ø     | Anzahl je Seite |
| SFN      | 177 | 139 | 53      | 53  | 39  | 2,5 | 5     | 1 + 10 + 9      |
| SFM-B    | 260 | 169 | 73      | 73  | 91  | 2,5 | 5     | 2 + 21 +20      |
| SFH-B    | 270 | 159 | 45      | 60  | 27  | 2,0 | 5     | 12 + 9          |
| SFHM-B   | 270 | 159 | 63      | 60  | 27  | 2,0 | 5     | 18 + 18         |
| SFHS-B   | 260 | 140 | 108     | 75  | 50  | 3,0 | 5     | 7 + 30 + 25     |
| SHLM-B   | 360 | 280 | 53      | -   | -   | 3,0 | 5; 18 | 2; 8            |
| SHLS-B   | 500 | 387 | 52      | -   | -   | 3,0 | 5;18  | 2; 9            |











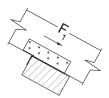


SHLM / SHLS

# Lochbleche, Sparrenanschlüsse

#### Sparrenfußverbinder - SF / SH

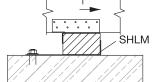
#### Charakteristische Werte der Tragfähigkeit


| Ta | bel | lle | 2 |
|----|-----|-----|---|

|          |                                                                 |           |                    | ,         |  |  |  |
|----------|-----------------------------------------------------------------|-----------|--------------------|-----------|--|--|--|
| Art. Nr. | Charakteristische Werte der Tragfähigkeit R <sub>1,k</sub> [kN] |           |                    |           |  |  |  |
|          | Anzahl Nägel                                                    | 1 Sa      | tz Sparrenfußverbi | inder     |  |  |  |
|          | je Seite                                                        | CNA4,0x40 | CNA4,0x50          | CNA4,0x60 |  |  |  |
| SFN      | 1 + 10 + 9                                                      | 27,6      | 33,3               | 35,5      |  |  |  |
| SFM-B    | 2 + 21 + 20                                                     | 63,6      | 74,8               | 79,0      |  |  |  |
| SFH-B    | 10 + 9                                                          | 27,7      | 33,5               | 35,7      |  |  |  |
| SFHM-B   | 18 + 18                                                         | 51,6      | 61,2               | 64,8      |  |  |  |
| SFHS-B   | 7 + 30 + 25                                                     | 79,9      | 96,7               | 102,9     |  |  |  |
| SHLM-B   | 8 + 2 M16                                                       | 20,7 1)   |                    |           |  |  |  |
| SHLS-B   | 9 + 2 M16                                                       | 28,8 1)   |                    |           |  |  |  |
|          |                                                                 |           |                    |           |  |  |  |

<sup>1)</sup> unabhängig von der Nagellänge




Strong-Tie



#### Beispiel:

Binder im Querschnitt 80 x 160 mm auf Schwelle 140 x 80 mm, gewählt Sparrenfußverbinder SFN und Schwellenhalter SHLM mit 2x 20 CNA4,0x40 Kammnägeln beim SFN und 8 CNA4,0x40 + 2 Ankerbolzen M16 beim

Belastung:  $F_{1,d} = 12,5 \text{ kN}$ ; NKL.2; KLED:  $k_{mod} = 0,9$ 

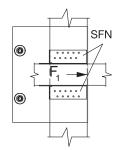


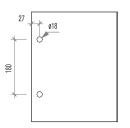
#### SFN

 $R_{1,d} = 27,6 \text{ kN} \times 0,9 / 1,3 = 19,1 \text{ kN}$ 

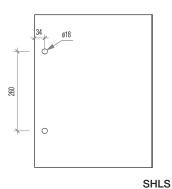
**Nachweis:**  $\frac{12,5}{19,1} = 0.65 \le 1.0 \Rightarrow Ok$ 

#### SHLM


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

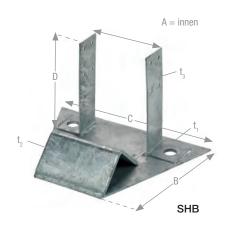

 $R_{1,d} = 20.7 \text{ kN x } 0.9 / 1.3 = 14.3 \text{ kN}$ 

**Nachweis:**  $\frac{12,5}{14,3} = 0.87 \le 1.0 \Rightarrow 0k$ 


Die Ankerbolzen M16 sowie die Verankerung im Beton sind für 12,5 kN / 2 = 6,3 kN gesondert nachzuweisen.

Bei diesem Anschluss ist sicherzustellen, dass ein Verdrehen der Schwelle durch die Auflast oder eine zusätzliche Verankerung verhindert wird.






SHLM



#### Sparrenhalter - SHB / SHH





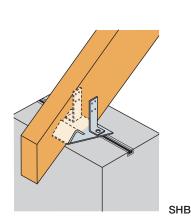
SHB Sparrenhalter für Anschlüsse an Beton und SHH Sparrenhalter für Anschlüsse an Holz werden für die Befestigung von Sparren mit einer Neigung von 30° bis 60° am Fußpunkt verwendet. Der aufgeschweißte Winkel weist immer 45° zur Grundfläche auf. Die Kerve im Sparren wird an den Winkel, abhängig von der Dachneigung angepasst.

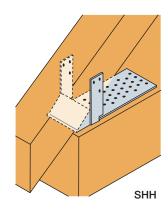
Material: Stahlsorte: S235JR gemäß EN10025.

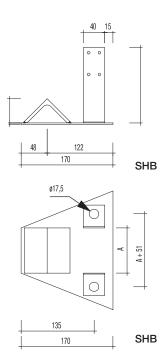
Korrosionsschutz: nach Bearbeitung rundumfeuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xlG Kammnägeln oder CSA5,0xl Schrauben. Der Anschluss am Beton wird mit Schrauben für Ankerschienen bzw. Ankerbolzen Ø16 mm ausgeführt.




#### Produktabmessungen


Tabelle 1


| Art. Nr.  |     |     | Löcher |     |     |                |                |         |            |
|-----------|-----|-----|--------|-----|-----|----------------|----------------|---------|------------|
|           | Α   | В   | С      | D   | t,  | t <sub>2</sub> | t <sub>3</sub> | Ø       | Anzahl     |
| SHB80G-B  | 84  | 170 | 220    | 140 | 2,5 | 6,0            | 2,0            | 5; 17,5 | 4 + 4; 2   |
| SHB100G-B | 104 | 170 | 240    | 140 | 2,5 | 6,0            | 2,0            | 5; 17,5 | 4 + 4; 2   |
| SHB120G-B | 124 | 170 | 260    | 140 | 2,5 | 6,0            | 2,0            | 5; 17,5 | 4 + 4; 2   |
| SHH80G-B  | 84  | 300 | _      | 140 | 2,5 | 6,0            | 2,0            | 5       | 3 + 3 + 25 |
| SHH100G-B | 104 | 280 | _      | 140 | 2,5 | 6,0            | 2,0            | 5       | 3+3+31     |
| SHH120G-B | 124 | 260 | -      | 140 | 2,5 | 6,0            | 2,0            | 5       | 3 + 3 + 44 |

Sonderbreiten sind auf Anfrage möglich

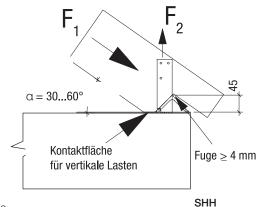








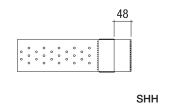
#### Sparrenhalter - SHB / SHH




#### Anwendungshinweise:

SHB Sparrenhalter werden mit zwei Ankerbolzen (M16) eingebaut. Die Ankerbolzen müssen jeweils für die hälftigen Scher- und Zugkräfte bemessen werden.

Sparrenneigungen > 60° und < 30° sind nicht zulässig. Es ist stets darauf zu achten, dass der Sparren eine genügend große, waagerechte Auflagerfläche zur Aufnahme der Vertikallasten erhält.


Des Weiteren eine ≥ 4mm große Fuge am Sparrenüberstand über dem Winkelprofil um ein Aufreißen des Sparrens zu vermeiden. Wird der Sparrenhalter SHH in die F. Richtung beansprucht, müssen Nägel unmittelbar vor dem Winkel eingebracht werden (siehe Zeichnungen).



#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

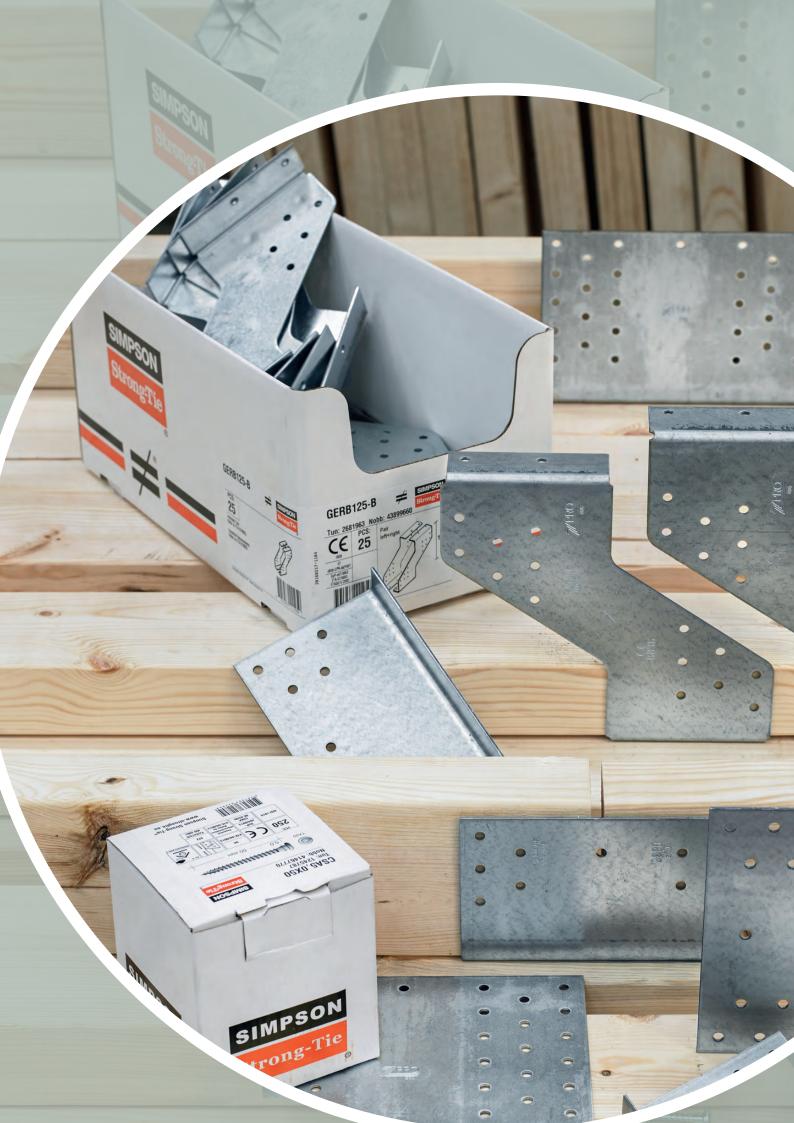
| Art. Nr.  | minimale Anzahl Nägel | Charakteristische Werte der Tragfähigkeit $\mathbf{R}_{\mathrm{i,k}}$ [ $\mathbf{k}$ |           |  |
|-----------|-----------------------|--------------------------------------------------------------------------------------|-----------|--|
|           | CNA4,0x50             | $R_{_{1,k}}$                                                                         | $R_{2,k}$ |  |
| SHH80G-B  | 19 + 2 x 3            | 32,2                                                                                 | 4,9       |  |
| SHH100G-B | 26 + 2 x 3            | 40,3                                                                                 | 6,9       |  |
| SHH120G-B | 31 + 2 x 3            | 48,3                                                                                 | 8,8       |  |
| SHB80G-B  | 2M16 + 2 x 4          | 58,4                                                                                 | 17,8      |  |
| SHB100G-B | 2M16 + 2 x 4          | 73,0                                                                                 | 17,8      |  |
| SHB120G-B | 2M16 + 2 x 4          | 87,5                                                                                 | 17,8      |  |



#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Sparren im Querschnitt 80 x 160 mm an Deckenbalken 100 x 200 mm (gleiche Ausrichtung), gewählt Sparrenhalter SHH80 mit 19 CNA4,0x50 Kammnägeln im Deckenbalken und 2x3 CNA4,0x50 Kammnägel in den Sparren.


 $\textbf{Belastung:} \; \textbf{F}_{\text{1,d}} = 14,5 \; \text{kN (als Normalkraft im Sparren)}, \; \textbf{F}_{\text{2,d}} = 1,8 \; \text{kN; NKL.2; KLED: kurz} \\ \Rightarrow \textbf{k}_{\text{mod}} = 0,9 \; \text{km} \\ = 0,9 \; \text{km}$ 

$$R_{1,d} = 32,2 \text{ kN} \times 0,9 / 1,3 = 22,3 \text{ kN}$$

$$R_{2d} = 4.9 \text{ kN} \times 0.9 / 1.3 = 3.4 \text{ kN}$$

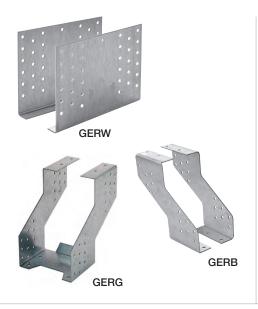
**Nachweis 1:** 
$$\frac{14,5}{22,3} = 0.65 \le 1.0 \Rightarrow 0k$$

**Nachweis 2:** 
$$\frac{1.8}{3.4} = 0.53 \le 1.0 \Rightarrow 0k$$








## Gerberverbinder

| Gelenksysteme – GERB / GERG / GERW | 199     |
|------------------------------------|---------|
| Gerberverbinder – GERB             | 200-201 |
| Gerberverbinder – GERG             | 202-203 |
| Gerberverbinder – GERW             | 204-205 |



#### Gelenksysteme - GERB / GERG / GERW





GERB, GERG Verbinder sind für Gelenksysteme geeignet, in denen keine Normalkräfte wirken. GERW Verbinder können zusätzlich Normalkräfte in Stabrichtung aufnehmen.

Material: Stahlsorte S250GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm. Die GERW Gerberverbinder können auch in nichtrostendem Stahl hergestellt werden.

Verbindungsmittel: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.

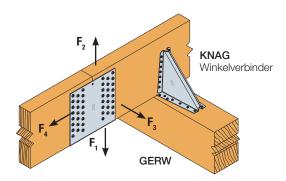






Größen



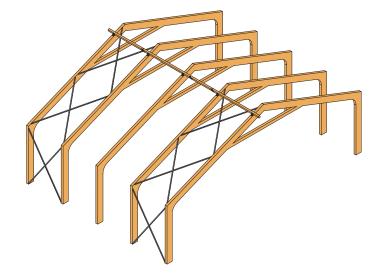





Gerberverbinder werden für die wirtschaftliche Gelenkausbildung von Mehrfeldträgern verwendet. Durch den Einbau von Gelenken lassen sich gegenüber ungestoßenen Durchlaufträgern Transportlängen verringern. Gelenke sollten bei Mehrfeldsystemen so geplant werden, dass im Falle eines Querschnittsversagens an einer Stelle keine kinematische Kette entsteht. Der Montagestoß wird außerhalb des

Auflagerbereichs angeordnet, genaue Angaben sind durch den Tragwerksplaner festzulegen. Bei Sparrenpfetten mit großen Dachneigungen oder bei Trägern mit Normalkräften wird der GERW Verbinder empfohlen.

Die Pfettenmontage mit Gerberverbindern benötigt etwa 20 %weniger Holz im Vergleich zur Ausführung mit Koppelpfetten.

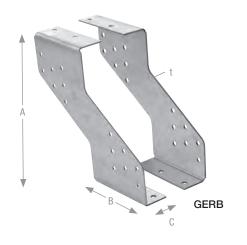



- F. Nach unten
- Nach oben

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

- Seitlich horizontal
- In Stabrichtung bei Typ GERW

Die Kräfte müssen mittig am Gerberverbinder im Stoßbereich der Pfetten angreifen.




#### Seitenansicht eines Durchlaufträgers mit Gerberstößen:



#### Gerberverbinder - GERB





GERB Gerberverbinder werden für die Gelenkausbildung von Durchlaufträgern verwendet. Ein Satz Gerberverbinder besteht aus einem rechten und einem linken Anschlussteil und kann für Pfettenbreiten ab 80 mm eingesetzt werden. GERB Gerberverbinder sind für die gängigsten Holzabmessungen erhältlich.

Material: Stahlsorte S250GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.





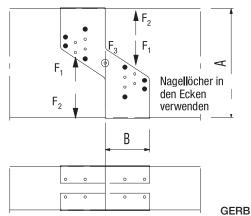


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

ETA-07/0053 DoP-e07/0053

#### Produktabmessungen

Tabelle 1


| Art. Nr.     | Al  | omessu | ng [mm] | Löcher<br>(je Satz) |   |        |
|--------------|-----|--------|---------|---------------------|---|--------|
|              | Α   | В      | С       | t                   | Ø | Anzahl |
| GERB160-B    | 160 | 90     | 30      | 2                   | 5 | 36     |
| GERB180-B    | 180 | 90     | 33      | 2                   | 5 | 36     |
| GERB200-B-DE | 201 | 90     | 33      | 2                   | 5 | 40     |
| GERB220-B    | 220 | 90     | 34      | 2                   | 5 | 40     |
|              |     |        |         |                     |   |        |

1) Innenmaße

#### Vollausnagelung alle Nagellöcher Ø verwenden $F_2$ В В **GERB**

#### Anwendungshinweis: Beim Typ GERB müssen die Pfetten im Stoßbereich mit Hirnholzkontakt eingebaut werden. ABR Winkelverbinder **GERB**

#### Teilausnagelung



#### Gerberverbinder - GERB

### SIMPSON Strong-Tie

#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr.     | Charakteristische Werte der Tragfähigkeit [kN] und Anzahl der Nägel [n]<br>1 Satz Gerberverbinder pro Anschluss mit CNA4,0x50 |                  |                 |                  |           |                  |                 |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------------------|-----------|------------------|-----------------|--|
|              | Te                                                                                                                            | ilausnagelu      | ng              | Vollausnagelung  |           |                  |                 |  |
|              | R <sub>1,k</sub>                                                                                                              | R <sub>2,k</sub> | Anzahl<br>Nägel | R <sub>1,k</sub> | $R_{2,k}$ | R <sub>3,k</sub> | Anzahl<br>Nägel |  |
| GERB160-B    | 15,4                                                                                                                          | 5,2              | 16              | 25,5             | 8,9       | 5,9              | 36              |  |
| GERB180-B    | 15,9                                                                                                                          | 5,2              | 16              | 26,4             | 8,9       | 5,9              | 36              |  |
| GERB200-B-DE | 15,4                                                                                                                          | 5,7              | 16              | 28,1             | 11,2      | 5,9              | 40              |  |
| GERB220-B    | 15,4                                                                                                                          | 5,7              | 16              | 28,3             | 11,2      | 5,9              | 40              |  |

Für abweichende Nagellängen können die Werte nach folgender Tabelle umgerechnet werden:

#### Umrechnungsfaktoren

Tabelle 3

|               | Umrechnungsfaktor für andere Nagellängen |                |                 |                |                |  |  |  |
|---------------|------------------------------------------|----------------|-----------------|----------------|----------------|--|--|--|
| CNA Kammnägel | el Teilausnagelung                       |                | Vollausnagelung |                |                |  |  |  |
|               | F <sub>1</sub>                           | F <sub>2</sub> | F <sub>1</sub>  | F <sub>2</sub> | F <sub>3</sub> |  |  |  |
| 4,0 x 40      | 0,90                                     | 0,82           | 0,87            | 0,82           | 0,76           |  |  |  |
| 4,0 x 60      | 1,04                                     | 1,06           | 1,05            | 1,06           | 1,26           |  |  |  |

#### Kombinierte Beanspruchung:

Bei gleichzeitiger Belastung in verschiedene Kraftrichtungen sind folgende Nachweise einzuhalten:

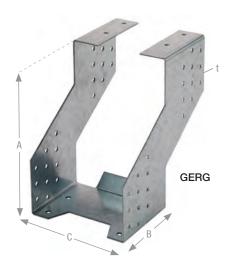
$$\left(\frac{F_{1,d}}{R_{1,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0 \qquad \text{bzw.} \qquad \left(\frac{F_{2,d}}{R_{2,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0$$

#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Pfette im Querschnitt 100 x 180 mm, gewählter Gerberverbinder GERB180 Vollausnagelung mit CNA4,0x60 Kammnägeln

**Belastung:** 
$$F_{1,d} = 9.5 \text{ kN}$$
;  $F_{3,d} = 2.6 \text{ kN}$ ; NKL 2; KLED:  $lang \Rightarrow k_{mod} = 0.7$ 


Die angegebenen Tabellenwerte sind auf die verwendeten CNA4,0xℓ Kammnägel umzurechnen:

$$R_{1,d} = 26,4 \times 0,7 / 1,3 \times 1,05 = 14,9 \text{ kN}$$
  
 $R_{3,d} = 5,9 \times 0,7 / 1,3 \times 1,26 = 4,0 \text{ kN}$ 

**Nachweis:** 
$$\left(\frac{9.5}{14.9}\right)^2 + \left(\frac{2.6}{4.0}\right)^2 = 0.83 \le 1.0 \Rightarrow 0k$$

#### Gerberverbinder - GERG



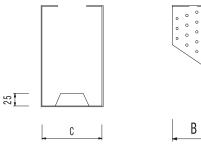


GERG ist die einteilige Alternative zum herkömmlichen GERB Gerberverbinder. Die statischen Belastbarkeiten beider Typen sind bei gleicher Höhe identisch. Die Pfettenmontage mit GERG Gerberverbindern benötigt in etwa 20 % weniger Holz im Vergleich zur Koppelpfetten-Montage.

Material: Stahlsorte S250GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.



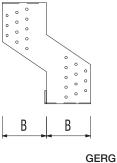
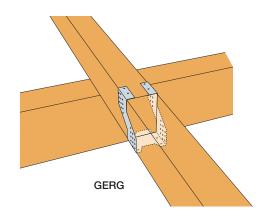
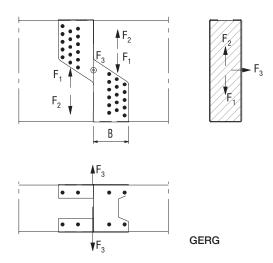




Tabelle 1

| Art. Nr.       |     | Abmessı | Löc | her |   |        |
|----------------|-----|---------|-----|-----|---|--------|
|                | А   | В       | С   | t   | Ø | Anzahl |
| GERG120/180    | 182 | 90      | 122 | 2,0 | 5 | 52     |
| GERG120/200    | 202 | 90      | 122 | 2,0 | 5 | 56     |
| GERG120/220    | 222 | 90      | 122 | 2,0 | 5 | 60     |
| GERG120/240    | 242 | 90      | 122 | 2,0 | 5 | 60     |
| GERG120/260    | 262 | 90      | 122 | 2,0 | 5 | 72     |
| GERG140/200    | 202 | 90      | 142 | 2,0 | 5 | 56     |
| GERG140/240    | 242 | 90      | 142 | 2,0 | 5 | 60     |
| GERG140/260 1) | 262 | 90      | 142 | 2,0 | 5 | 72     |
| GERG160/240    | 242 | 90      | 162 | 2,0 | 5 | 60     |
| GERG160/260 1) | 262 | 90      | 162 | 2,0 | 5 | 72     |






C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

#### Anwendungshinweis:

#### Beim Typ GERG müssen die Pfetten im Stoßbereich mit Hirnholzkontakt eingebaut werden.





## Gerberverbinder

#### Gerberverbinder – **GERG**



#### Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr.    | Charakteristische Werte der Tragfähigkeit [kN]<br>Gerberverbinder GERG - Anschluss mit CNA4,0x50 |                  |           |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------|------------------|-----------|--|--|--|--|
|             | $R_{1,k}$                                                                                        | R <sub>2,k</sub> | $R_{3,k}$ |  |  |  |  |
| GERG120/180 | 22,3                                                                                             | 9,1              | 5,9       |  |  |  |  |
| GERG120/200 | 05.1                                                                                             | 10.2             | E O       |  |  |  |  |
| GERG140/200 | 25,1                                                                                             | 10,3             | 5,9       |  |  |  |  |
| GERG120/220 | 31,4                                                                                             | 10.0             | E 0       |  |  |  |  |
| GERG160/220 | 31,4                                                                                             | 13,8             | 5,9       |  |  |  |  |
| GERG120/240 |                                                                                                  |                  |           |  |  |  |  |
| GERG140/240 | 34,5                                                                                             | 15,3             | 5,9       |  |  |  |  |
| GERG160/240 |                                                                                                  |                  |           |  |  |  |  |
| GERG120/260 |                                                                                                  |                  |           |  |  |  |  |
| GERG140/260 | 41,5                                                                                             | 19,3             | 5,9       |  |  |  |  |
| GERG160/260 |                                                                                                  |                  |           |  |  |  |  |

Für abweichende Nagellängen können die Werte nach folgender Tabelle umgerechnet werden:

#### Umrechnungsfaktoren

Tabelle 3

| Belastungsrichtung | Umrechnungsfaktor für andere CNA Nagellängen |          |  |  |  |
|--------------------|----------------------------------------------|----------|--|--|--|
|                    | 4,0 x 40                                     | 4,0 x 60 |  |  |  |
| F <sub>1</sub>     | 0,82                                         | 1,06     |  |  |  |
| F <sub>2</sub>     | 0,82                                         | 1,06     |  |  |  |
| F <sub>3</sub>     | 0,76                                         | 1,26     |  |  |  |

#### Kombinierte Beanspruchung:

Bei gleichzeitiger Belastung in verschiedene Kraftrichtungen sind folgende Nachweise einzuhalten:

$$\left(\frac{F_{1,d}}{R_{1,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0 \qquad \qquad \text{bzw. } \left(\frac{F_{2,d}}{R_{2,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0$$

#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Pfette im Querschnitt 120 x 240 mm, gewählter Gerberverbinder GERG120/240 mit CNA4,0x40 Kammnägel

**Belastung:**  $F_{1,d} = 9.7 \text{ kN}$ ;  $F_{3,d} = 1.6 \text{ kN}$ ; NKL 2; KLED:  $lang \Rightarrow k_{mod} = 0.7$ 

Die angegebenen Tabellenwerte sind auf die verwendeten CNA4,0x40 Kammnägel nach Tabelle 3 umzurechnen.

$$R_{1,d} = 34,5 \times 0,7 / 1,3 \times 0,82 = 15,23 \text{ kN}$$
  
 $R_{3,d} = 5,9 \times 0,7 / 1,3 \times 0,76 = 2,4 \text{ kN}$ 

**Nachweis:** 
$$\left| \frac{9.7}{15.23} \right|^2 + \left| \frac{1.6}{2.4} \right|^2 = 0.85 \le 1.0 \Rightarrow \text{Ok}$$

#### Gerberverbinder - GERW





GERW Gerberverbinder eignen sich für die Gelenkausbildung von stumpf gestoßenen Durchlaufträgern. Neben Querkräften in vertikaler und horizontaler Richtung können sie Kräfte in Stabrichtung aufnehmen und eignen sich daher zur Weiterleitung von Verbandskräften. In Abhängigkeit von der Belastung kann zwischen Teil- und Vollausnagelung gewählt werden.

Material: Stahlsorte S250GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.



Tabelle 1









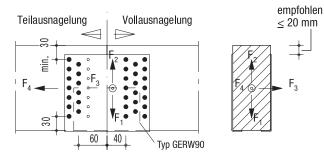


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

ETA-07/0317 DE-DoP-e07/0317

Diverse Größen

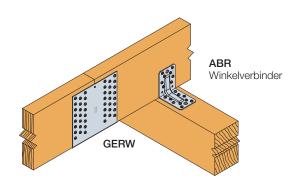
Einige Typen


#### Produktabmessungen

GERW420

420

180


| Art. Nr. |     | Abmessu | Löcher | (je Satz) |   |        |
|----------|-----|---------|--------|-----------|---|--------|
|          | Α   | В       | С      | t         | Ø | Anzahl |
| GERW90   | 90  | 140     | 20     | 2,0       | 5 | 20     |
| GERW120  | 120 | 180     | 20     | 2,0       | 5 | 56     |
| GERW140  | 140 | 180     | 20     | 2,0       | 5 | 68     |
| GERW160  | 160 | 180     | 20     | 2,0       | 5 | 80     |
| GERW180  | 180 | 180     | 20     | 2,0       | 5 | 92     |
| GERW200  | 200 | 180     | 20     | 2,0       | 5 | 104    |
| GERW220  | 220 | 180     | 20     | 2,0       | 5 | 116    |
| GERW240  | 240 | 180     | 20     | 2,0       | 5 | 128    |
| GERW260  | 260 | 180     | 20     | 2,0       | 5 | 140    |
| GERW280  | 280 | 180     | 20     | 2,0       | 5 | 152    |
| GERW300  | 300 | 180     | 20     | 2,0       | 5 | 164    |
| GERW320  | 320 | 180     | 20     | 2,0       | 5 | 176    |
| GERW340  | 340 | 180     | 20     | 2,0       | 5 | 188    |
| GERW360  | 360 | 180     | 20     | 2,0       | 5 | 200    |
| GERW380  | 380 | 180     | 20     | 2,0       | 5 | 212    |
| GERW400  | 400 | 180     | 20     | 2,0       | 5 | 224    |



#### Anwendungshinweise:

Die Aufnahme von Zugkräften ist nur bei einer Teilausnagelung möglich. Dabei bleibt die stoßfugennahe Lochreihe frei. Bei einer Vollausnagelung wäre der Abstand der Nägel zum Hirnholz zu gering.

Gerberverbinder ab der Größe GERW280 sollten ausschließlich für Brettschichtholz-Pfetten verwendet werden. Zur Vermeidung von Querzugspannungen und gegen Verdrehungen des Pfettenstoßes sollten die Gerberverbinder GERW, unter Berücksichtigung der Randabstände für die Nägel, über eine größtmögliche Pfettenhöhe gewählt werden. Sind Belastungen rechtwinklig zur Pfettenachse vorhanden (F. Lasten), wird empfohlen die Abkantung des GERW auf der Oberseite der Pfetten zu montieren.



20

2,0

5

236

#### Gerberverbinder – **GERW**



#### Charakteristische Werte der Tragfähigkeit Tabelle 2

| Transfer Table |                  |                                                                                                      |          |                  |                     |            |      |  |
|----------------|------------------|------------------------------------------------------------------------------------------------------|----------|------------------|---------------------|------------|------|--|
| Art. Nr.       | Nägel<br>je Satz | Charakteristische Werte der Tragfähigkeit [kN]<br>1 Satz Gerberverbinder pro Anschluss mit CNA4,0x50 |          |                  |                     |            |      |  |
|                |                  | Teila                                                                                                | usnagelu | ng               | Vol                 | lausnageli | ung  |  |
|                |                  | $\mathbf{R}_{1,k} = \mathbf{R}_{2,k} \qquad \mathbf{R}_{3,k} \qquad \mathbf{R}_{4,k}$                |          | Nägel<br>je Satz | $R_{1,k} = R_{2,k}$ | $R_{3,k}$  |      |  |
| GERW90         | -                | -                                                                                                    | _        | _                | 20                  | 6,0        | 5,9  |  |
| GERW120        | 36               | 12,4                                                                                                 | 5,6      | 40,0             | 56                  | 25,3       | 9,8  |  |
| GERW140        | 44               | 18,2                                                                                                 | 6,7      | 48,8             | 68                  | 34,6       | 11,8 |  |
| GERW160        | 52               | 24,4                                                                                                 | 7,8      | 57,7             | 80                  | 45,1       | 13,7 |  |
| GERW180        | 60               | 31,5                                                                                                 | 8,9      | 66,6             | 92                  | 56,4       | 15,7 |  |
| GERW200        | 68               | 39,1                                                                                                 | 10,0     | 75,5             | 104                 | 68,6       | 17,6 |  |
| GERW220        | 76               | 47,3                                                                                                 | 11,1     | 84,4             | 116                 | 81,5       | 19,6 |  |
| GERW240        | 84               | 55,7                                                                                                 | 12,2     | 93,2             | 128                 | 94,8       | 21,6 |  |
| GERW260        | 92               | 64,6                                                                                                 | 13,3     | 102,1            | 140                 | 108,3      | 23,5 |  |
| GERW280        | 100              | 73,8                                                                                                 | 14,4     | 111,0            | 152                 | 122,3      | 25,5 |  |
| GERW300        | 108              | 82,7                                                                                                 | 15,5     | 119,9            | 164                 | 135,8      | 27,4 |  |
| GERW320        | 116              | 92,0                                                                                                 | 16,7     | 128,8            | 176                 | 149,7      | 29,4 |  |
| GERW340        | 124              | 101,2                                                                                                | 17,8     | 137,6            | 188                 | 163,7      | 31,4 |  |
| GERW360        | 132              | 110,5                                                                                                | 18,9     | 146,5            | 200                 | 177,6      | 33,3 |  |
| GERW380        | 140              | 116,1                                                                                                | 20,0     | 155,4            | 212                 | 187,6      | 35,3 |  |
| GERW400        | 148              | 124,5                                                                                                | 21,1     | 164,3            | 224                 | 200,5      | 37,2 |  |
| GERW420        | 156              | 132,8                                                                                                | 22,2     | 173,2            | 236                 | 213,3      | 39,2 |  |

Für abweichende Nagellängen können die Werte nach folgender Tabelle umgerechnet werden:

#### Umrechnungsfaktoren

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC

| Tabelle | .3  |
|---------|-----|
| Tabelle | , 0 |

| Belastungsrichtung | Umrechnungsfaktor für andere Nagellängen |       |       |       |  |
|--------------------|------------------------------------------|-------|-------|-------|--|
|                    | 4,0                                      | x 40  | 4,0   | x 60  |  |
|                    | Teil.                                    | Voll. | Teil. | Voll. |  |
| F <sub>1</sub>     | 0,82                                     | 0,82  | 1,06  | 1,06  |  |
| F <sub>2</sub>     | 0,82                                     | 0,82  | 1,06  | 1,06  |  |
| F <sub>3</sub>     | 0,82                                     | 0,76  | 1,06  | 1,26  |  |
| F <sub>4</sub>     | 0,82                                     | 0,82  | 1,06  | 1,06  |  |

#### Beispiel 1:

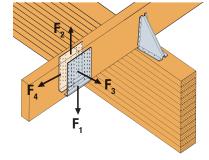
Pfette im Querschnitt 100 x 200 mm, gewählter Gerberverbinder GERW180 mit Teilausnagelung CNA4,0x50 Kammnägel

$$\begin{array}{l} \textbf{Belastung:} \; \textbf{F}_{\text{1,d}} = 12,5 \; \text{kN;} \; \textbf{F}_{\text{3,d}} = 2,6 \; \text{kN;} \; \textbf{F}_{\text{4,d}} = 9,5 \; \text{kN;} \\ \textbf{NKL 2;} \; \textbf{KLED:} \; \textbf{kurz} \Longrightarrow \textbf{k}_{\text{mod}} = 0,9 \end{array}$$

$$\begin{aligned} &R_{_{1,d}} = 31,5 \times 0,9 \ / \ 1,3 = 21,8 \ kN \\ &R_{_{3,d}} = 8,9 \times 0,9 \ / \ 1,3 = 6,2 \ kN \\ &R_{_{4,d}} = 66,6 \times 0,9 \ / \ 1,3 = 46,1 \ kN \end{aligned}$$

Nachweis: 
$$\left| \frac{12,5}{21,8} \right|^{1,25} + \left| \sqrt{\left| \frac{2,6}{6,2} \right|^2 + \left| \frac{9,5}{46,1} \right|^2} \right|^{1,25} = 0,89 \le 1,0 \Rightarrow \text{Ok}$$

#### Kombinierte Beanspruchung:


Bei gleichzeitiger Belastung in verschiedene Kraftrichtungen sind folgende Nachweise einzuhalten:

$$\left(\frac{F_{1,d}}{R_{1,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0 \qquad \text{bzw. } \left(\frac{F_{2,d}}{R_{2,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0$$

In Verbindung mit Normalkräften (nur für GERW) gilt:

$$\left(\frac{F_{1,d}}{R_{1,d}}\right)^{1,25} + \left(\sqrt{\frac{F_{3,d}}{R_{3,d}}^2 + \left(\frac{F_{4,d}}{R_{4,d}}\right)^2}\right)^{1,25} \le 1,0$$

bzw.  $\left| \frac{F_{2,d}}{R_{2,d}} \right|^{1,25} + \sqrt{\left| \frac{F_{3,d}}{R_{3,d}} \right|^2 + \left| \frac{F_{4,d}}{R_{4,d}} \right|^2}$ 



#### Beispiel 2:

Pfette im Querschnitt 100 x 200 mm, gewählter Gerberverbinder GERW180 mit Teilausnagelung CNA4,0x50 Kammnägel

Belastung: 
$$F_{1,d} = 15,5 \text{ kN}; F_{3,d} = 2,6 \text{ kN};$$
  
NKL 2; KLED: mittel  $\Rightarrow$   $k_{mod} = 0,8$ 

$$R_{1,d} = 31.5 \times 0.8 / 1.3 = 19.4 \text{ kN}$$
  
 $R_{3,d} = 8.9 \times 0.8 / 1.3 = 5.5 \text{ kN}$ 

**Nachweis:** 
$$\left| \frac{15,5}{19,4} \right|^2 + \left| \frac{2,6}{5,5} \right|^2 = 0.86 \le 1.0 \Rightarrow \text{Ok}$$







## Stützenfüße

| Anwendung                               | 209     |
|-----------------------------------------|---------|
| Symbolerläuterung:                      | 210     |
| Übersicht                               |         |
| Beispiel                                |         |
| APB100/150Z                             |         |
| CMR / CMS                               |         |
| CPB40 / CPS40                           | 216-217 |
| PB3B / PB3C                             |         |
| PGS24                                   | 220-221 |
| PIG / PILG                              | 222-223 |
| PISBMAXIG / PISMAXIG / PISBxxG / PIS70G | 224-225 |
| PJPBG / PJPSG                           | 226-227 |
| PJIBG / PJISG                           |         |
| PLxxG                                   | 229     |
| PLBxxG / PLSxxG                         | 230     |
| PP18/24xy                               | 231     |
| PPCxx/yyBZ                              |         |
| PP80G / PPL80G                          | 234-235 |
| PPA / PPRC                              | 236     |
| PPBxxG / PPS80G                         | 237     |
| PPDxxG                                  | 238-239 |
| PU                                      |         |
| PUA / PUA/B                             |         |
| PVDBxxG / PVDxxG / PVIG / PVIBG         |         |
|                                         |         |





Stützenfüße mit einer mattsilbergrauen Oberfläche, die sich sehen lassen kann

APB100/150Z

- einfach brillant!

Stützenfüße

#### Stützenfüße – Anwendung

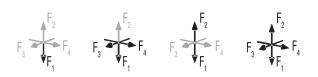


#### Anwendung

Anschlüsse von Stützen aus Holz oder Holzwerkstoffen an Beton oder andere Untergründe.

#### Material

- S235JR
- S355JO
- B550BR+AC
- S220JR
- S250GD
- Stützenfüße in nichtrostendem Stahl auf Anfrage


#### Korrosionsschutz

Der jeweilige Korrosionsschutz und der mögliche Anwendungsbereich sind bei den einzelnen Produktbeschreibungen angegeben.

Die meisten Stützenfüße sind mit einer mittleren Zinkschichtdicke  $\geq$  55 µm gemäß DIN EN 1461 stückverzinkt (feuerverzinkt) und damit für die Anwendung im Außenbereich geeignet.

#### Definition der Kraftrichtungen

Die möglichen Belastungsrichtungen der einzelnen Stützenfüße werden über folgende Lastpfeilgrafiken dargestellt.



Ergänzende oder abweichende Definitionen sind bei den betreffenden Produkten angegeben.

# Beispiel am PGS Stützenfuß: PGS Stützenfüße können Lasten in vier Richtungen aufnehmen, die horizontalen Lasten F<sub>3</sub> und F<sub>4</sub> sind von der Position der Fußplatte abhängig.

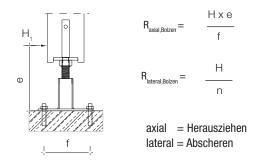
#### Kombinierte Belastung

Sofern nicht gesondert angegeben gilt:

$$\sum \frac{F_i}{R_i} \le 1.0$$

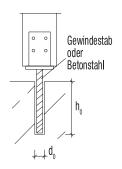
#### Befestigung am Holz

Der Anschluss an Holz oder Holzwerkstoffe erfolgt in der Regel mit


- CNA4,0xl Kammnägeln
- CSA5,0xl Verbinderschrauben
- Holzschrauben
- STD Stabdübel Ø8 bis 12 mm

#### Verankerung im Beton

Die Verankerung von Stützenfüßen im Beton ≥ C20/25 erfolgt entweder durch direktes Einbetonieren der angeschweißten Ankerelemente oder durch nachträgliche Befestigung mittels Bohrmontage mit für die jeweilige Anwendung zugelassenen Ankerholzen


Die Ankerbolzen sind für die einwirkenden Zug- und Querlasten zu bemessen. Zugkräfte, resultierend aus einem Biegemoment, (Horizontallasten x Hebelarm "e") müssen bei der Bemessung berücksichtigt werden.

Die Nachweise für Verankerungen im Beton sind stets gesondert zu führen.

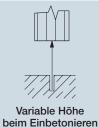


mit n = Anzahl der Ankerbolzen.

Ankerbolzen bzw. angeschweißte Ankerelemente (M16/M20 bzw. Betonstahl Ø16/Ø20 mm) können mit den Injektionsmörtelsystemen VT-HP $^{\circ}$  oder POLY-GPG $^{\circ}$  PLUS im Beton verankert werden.



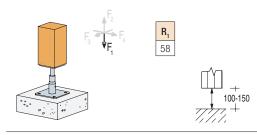
Die Bestimmungen und Installationshinweise der technischen Bewertungen ETA-19/0419 bzw. ETA19-0626 sind zu beachten.


**SIMPSON** 

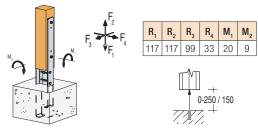


Variable Höhe

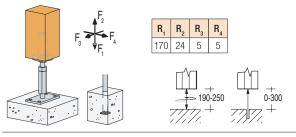
Höhe nach


Einbau verstellbar

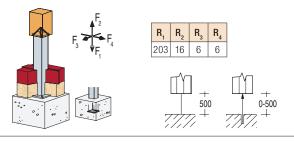




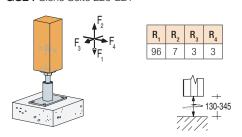

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.


**APB100/150Z** Siehe Seite 213

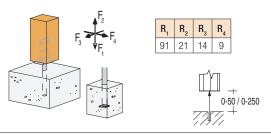



CMR / CMS Siehe Seite 214-215

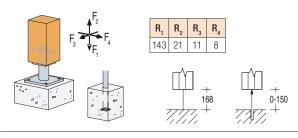



CPB40 / CPS40 Siehe Seite 216-217

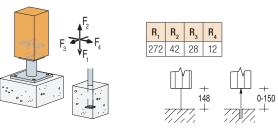



**PB3B / PB3C** Siehe Seite 218-219

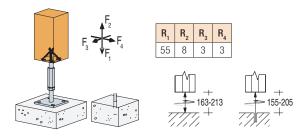



PGS24 Siehe Seite 220-221

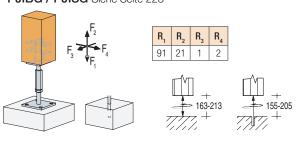



PIG / PILG Siehe Seite 222-223



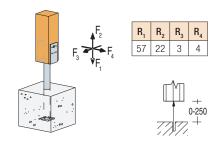

PISBxxG / PIS70G Siehe Seite 224-225



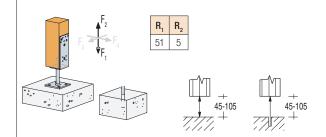

PISBMAXIG / PISMAXIG Siehe Seite 224-225



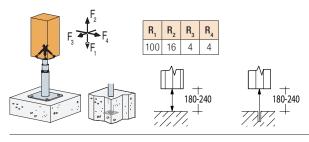
PJPBG / PJPSG Siehe Seite 226-227



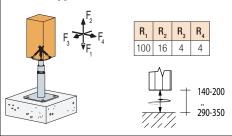

PJIBG / PJISG Siehe Seite 228



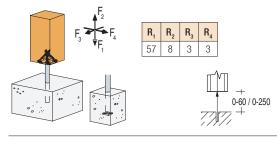

#### Stützenfüße – Übersicht


#### PLxxG Siehe Seite 229

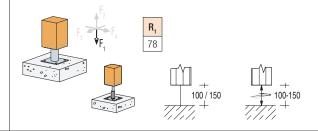



#### PLBxxG / PLSxxG Siehe Seite 230

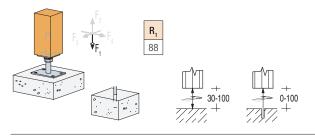



PP18/24xy Siehe Seite 231

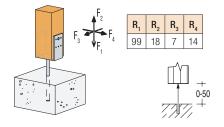



PPCxx/yyBZ Siehe Seite 232-233



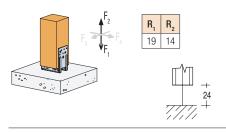

**PP80G / PPL80G** Siehe Seite 234-235



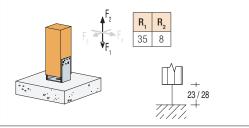

PPA / PPRC Siehe Seite 236



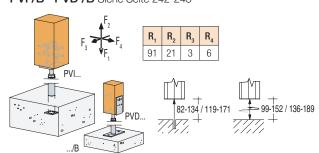
PPBxxG / PPS80G Siehe Seite 237



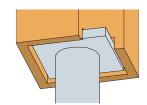

PPDxxG Siehe Seite 238-239




PU Siehe Seite 240


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.




PUA / PUA/B Siehe Seite 241



PVI /B PVD /B Siehe Seite 242-243

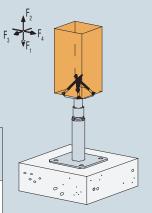


#### Stützenfüße – Beispiel



Bei Stützenfüßen zum Aufdübeln sollte eine Sperrschicht zwischen Stützenfuß und Beton eingebaut werden um die Zinkschicht keiner Dauerfeuchte auszusetzen.

Werden Stützenfüße teilweise durch Pflaster oder Erde umbaut, sollten diese Bereiche mit einem geeigneten Schutzanstrich versehen werden um die Zinkschicht vor mechanischer Beanspruchung, Dauerfeuchte und ggf. Tausalzen zu schützen.


Anschluss einer Stütze 140/140 mm in der NKL 2, mit folgenden Belastungen:

 $F_{1,d} = 42$  kN, KLED: für Einzelnachweis KLED: mittel  $\Rightarrow k_{mod} = 0.8$ 

für Überlagerung KLED: kurz  $\Rightarrow$   $k_{mod} = 0.9$ 

 $F_{2.d} = 4.0 \text{ kN, KLED: kurz} \Rightarrow k_{mod} = 0.9$ 

 $F_{3,d} = 0.7 \text{ kN, KLED: kurz} \Rightarrow k_{mod} = 0.9$ 



C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC

#### Gewählter Stützenfuß: PP18/24BZ mit folgenden statischen Werten:

| Art. Nr.  | Verbindungsmittel<br>an der Stütze |                                   | Charakteristische Werte der Tragfähigkeit [kN] |                  |                        |  |  |  |  |
|-----------|------------------------------------|-----------------------------------|------------------------------------------------|------------------|------------------------|--|--|--|--|
|           | Anzahl                             | Typ / Artikel                     | R <sub>1,k</sub>                               | R <sub>2,k</sub> | $R_{3,k} = R_{4,k}$    |  |  |  |  |
| PP18/24BB | 4                                  | TTZNFS6,0x100<br>Senkkopfschraube | 100,5 / k <sub>mod</sub> 0,6                   | 12,7             | min. {                 |  |  |  |  |
| PP18/24BZ | 4                                  | mit IMPREG®+<br>Beschichtung      | min. { 93,0 / k <sub>mod</sub>                 | min.             | 2,0 / k <sub>mod</sub> |  |  |  |  |

#### Kombinierte Beanspruchung

Es gilt: 
$$\frac{F_{i,d}}{R_{i,d}} \le 1$$

#### Einzelnachweis:

 $R_{1,d} = min. von 100,5 / 0,8^{0.6} \times 0,8 / 1,3 = 70,7 kN$ 

oder 93,0 / 0,8 x 0,8 / 1,3 = 71,5 kN  $\Rightarrow$  nicht maßgebend (Werte bei KLED: mittel und  $k_{mod} = 0,8$ )

#### Überlagerung:

 $R_{1d} = min. von 100,5 / 0,9^{0,6} \times 0,9 / 1,3 = 74,1 kN \Rightarrow nicht maßgebend$ oder 93,0 / 0,9 x 0,9 / 1,3 = 71,5 kN (Werte bei KLED: kurz und  $k_{mod} = 0,9$ )

 $R_{2,d} = min. von 12,7 \times 09 / 1,3 = 8,8 kN \Rightarrow nicht maßgebend$ oder  $10,3 / 0,9 \times 0,9 / 1,3 = 7,9 \text{ kN}$ 

 $R_{3,d} = min. von 3,2 \times 0,9 / 1,3 = 2,2 \Rightarrow nicht maßgebend$ oder  $2/0.9 \times 0.9/1.3 = 1.5$ 

#### Nachweise:

 $F_{1,d} / R_{1,d} = 42,0 \text{ kN} / 70,7 \text{ kN} = 0,59 \le 1,0 \Longrightarrow 0 \text{k}$ 

Kombination: Die Last F, wird um die abhebende Last F, reduziert,

Es wird die Tragfähigkeit für KLED: kurz maßgebend

$$(F_{1,d} - F_{2,d}) / R_{1,d} + F_{3,d} / R_{3,d} = (42,0 - 4,0) / 71,5 + 0,7 / 1,5 = 1,0 \le 1,0 \Rightarrow Ok$$

Die Verankerung im Beton ist gesondert nachzuweisen.

Z.B. mit unserem Bemessungsprogramm "Anchor Designer™"



strongtie.de -> Ressourcen -> Software

#### Stützenfüße - APB100/150Z





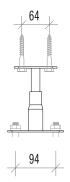
APB100/150Z

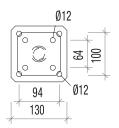
APB100/150Z Stützenfüße sind zur Aufständerung von Wandkonstruktionen und für Stützen ab 100 mm Holzbreite geeignet. Eine Höhenverstellung ist im Bereich von 100–150 mm möglich. APB100/150Z- Stützenfüße wurden zur Aufnahme von Vertikallasten entwickelt.

Material: Stahlsorte: S235JR gemäß EN10025.

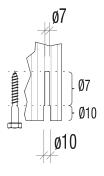
Korrosionsschutz: Duplexbeschichtung, bestehend aus einem galvanischen Zink-Nickel-Überzug und einer Versiegelung (silbergrauer TopCoat). Beschichtungsdicke  $\geq$  12  $\mu m$ .

Befestigung: Der APB100/150Z wird am Holz mit 4 Stk. Ø10 mm Holzschrauben befestigt. Der Anschluss an Beton erfolgt mit Ankerbolzen Ø10 mm.





#### Produktabmessungen

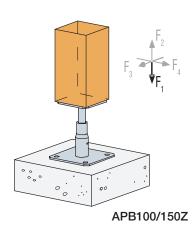
| Produktabmessungen Tabelle 1 |     |                |     |     |         |    |    |                |     |        |
|------------------------------|-----|----------------|-----|-----|---------|----|----|----------------|-----|--------|
| Art. Nr.                     |     | Abmessung [mm] |     |     |         |    |    | Löc            | her |        |
|                              | Α   | В              | D   | E   | F       | G  | t, | t <sub>2</sub> | Ø   | Anzahl |
| APB100/150Z                  | 100 | 100            | 130 | 130 | 100-150 | 20 | 4  | 4              | 12  | 4 + 4  |


Charakteristische Werte der Tragfähigkeit

| Art. Nr.    | Ver    | bindungsmittel                          | Charakteristische Werte der Tragfähigkeit [kN] |
|-------------|--------|-----------------------------------------|------------------------------------------------|
|             | Anzahl | Typ / Artikel                           | $\mathbf{R}_{\mathrm{t,k}}$                    |
| APB100/150Z | 4      | Schraube Ø10x80<br>LAG10080 galv. verz. | 58,0 / k <sub>mod</sub> <sup>0,5</sup>         |

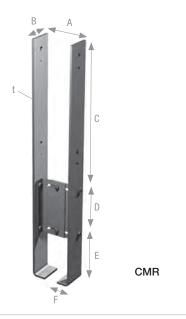





APB100/150Z



C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.


#### Anwendungshinweis:

Die Bohrungen für die Holzschrauben in der Stütze sollten auf der ganzen Länge mit Ø7 mm und auf Schraubenschaftlänge mit Ø10 mm vorgebohrt werden.



#### Stützenfüße - CMR / CMS





Die CMR / CMS Stützenfüße sind zur Herstellung von eingespannten Stützen, z.B. bei Carports, kleineren Hallen o.ä. bei denen keine Wandverbände eingesetzt werden sollen, vorgesehen. Die breitenverstellbaren Stützenfüße können Druckkräfte, Zugkräfte und Momente in beide Achsrichtungen

Material: Stahlsorte: S235JR gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

Befestigung: Der Anschluss der Stützenfüße erfolgt mit Bulldogdübeln C2, Ø75 mm oder Geka-Dübeln C11, Ø65 mm und M16 Bolzen an die Holzstütze. Voraussetzung ist eine Einbetoniertiefe von mind. 300 bzw. 200 mm mit einer Mindestbetongüte C20/25. Der Nachweis für das Betonfundament ist gesondert

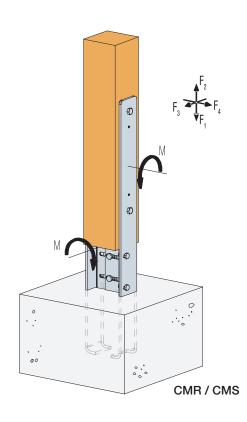






C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.




#### Produktabmessungen

| F | Produktabmessungen Tabelle 1 |         |                   |     |     |     |    |    |     |                |         |        |
|---|------------------------------|---------|-------------------|-----|-----|-----|----|----|-----|----------------|---------|--------|
|   | Art. Nr.                     |         | Abmessung [mm]    |     |     |     |    |    | Löc | her            |         |        |
|   |                              | А       | В                 | С   | D   | Е   | F  | G  | t,  | t <sub>2</sub> | Ø       | Anzahl |
|   | CMR                          | 115-165 | 100 <sup>1)</sup> | 600 | 250 | 300 | 60 | 20 | 10  | 4              | 6,5; 17 | 4; 4   |
|   | CMS                          | 80-140  | 80 2)             | 470 | 150 | 200 | 40 | 20 | 8   | 4              | 6,5; 17 | 4; 4   |

1) Mindestbreite Holzstütze für CMR: B ≥ 120 mm

#### Anwendungshinweis:

So unscheinbar ein einfacher Carport sein mag, gehört auch dieser i.d.R. zu den tragenden Konstruktionen, für die Standsicherheit und Gebrauchstauglichkeit zu gewährleisten sind. Störende und darum fehlende oder nachträglich demontierte Bauteile wie z.B. Streben und Kopfbänder sind häufig wesentliche Bestandteile der sicherheitsrelevanten Aussteifung. Die meisten Anschlüsse von Standard- Stützenfüßen an eine Stütze sind gelenkig anzusehen und werden häufig überschätzt. Werden Carportstützen von vornherein mit den zugelassenen CMR oder CMS Stützenfüßen eingespannt, kann von einer größtmöglichen, frei nutzbaren Höhe und trotzdem von einem sicheren Stand ausgegangen werden.



 $<sup>^{2)}</sup>$  Mindestbreite Holzstütze für CMS: B  $\geq$  100 mm

#### Stützenfüße - CMR / CMS



#### Charakteristische Werte der Tragfähigkeit

| Lasteinwirkungs-<br>richtung | Holzabmessung b | Charakteristische Werte der<br>Tragfähigkeit [kN] bzw. [kNm] min. von |
|------------------------------|-----------------|-----------------------------------------------------------------------|
|                              | [mm]            | CMR                                                                   |
| $F_1 = F_2$                  | ≥ 115           | 117,2                                                                 |
| F <sub>3</sub>               | ≥ 115           | 99,0; 21,3 / k <sub>mod</sub>                                         |
| F <sub>4</sub>               | ≥ 115           | 33,0; 30,9 / k <sub>mod</sub>                                         |
| M <sub>1</sub>               | ≥ 115           | 19,8; 13,9 / k <sub>mod</sub>                                         |
|                              | 115             | 6,7                                                                   |
|                              | 120             | 7,0                                                                   |
|                              | 125             | 7,3                                                                   |
| $M_{\scriptscriptstyle{2}}$  | 140             | 8,2                                                                   |
|                              | 150             | 8,8                                                                   |
|                              | 160             | 9,4                                                                   |

| Charakteristische Werte der Tragfähigkeit Tabelle 3 |                 |                                                                       |  |  |  |  |  |
|-----------------------------------------------------|-----------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Lasteinwirkungs-<br>richtung                        | Holzabmessung b | Charakteristische Werte der<br>Tragfähigkeit [kN] bzw. [kNm] min. von |  |  |  |  |  |
|                                                     | [mm]            | CMS                                                                   |  |  |  |  |  |
| $F_1 = F_2$                                         | ≥ 80            | 96,9                                                                  |  |  |  |  |  |
| F <sub>3</sub>                                      | ≥ 80            | 74,0; 15,0 / k <sub>mod</sub>                                         |  |  |  |  |  |
| F <sub>4</sub>                                      | ≥ 80            | 21,1; 19,8 / k <sub>mod</sub>                                         |  |  |  |  |  |
| $M_1$                                               | ≥ 80            | 11,6; 7,1 / k <sub>mod</sub>                                          |  |  |  |  |  |
|                                                     | 80              | 3,9                                                                   |  |  |  |  |  |
| M                                                   | 100             | 4,8                                                                   |  |  |  |  |  |
| $M_2$                                               | 120             | 5,8                                                                   |  |  |  |  |  |
|                                                     | 140             | 6,8                                                                   |  |  |  |  |  |

#### Kombinierte Beanspruchung

$$\textbf{Es gilt:} \left( \frac{F_{_{1/2,d}}}{R_{_{1/2,d}}} \right)^2 + \left( \frac{F_{_{3,d}}}{R_{_{3,d}}} + \frac{M_{_{1,d}}}{R_{_{M1,d}}} \right)^2 \leq 1 \text{ bzw.} \quad \left( \frac{F_{_{1/2,d}}}{R_{_{1/2,d}}} + \frac{M_{_{2,d}}}{R_{_{M2,d}}} \right)^2 + \left( \frac{F_{_{4,d}}}{R_{_{4,d}}} \right)^2 \leq 1$$

#### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Anschluss einer Holzstütze mit Querschnitt 140x140 mm, gewählter Stützenfuss CMR

$$F_{1.d} = 29 \text{ kN}$$

$$F_{4,d} = 4,2 \text{ kN}$$

$$M_{2.d} = 1.9 \text{ kNm}$$

Einbau im Außenbereich, NKL 3, KLED: mittel  $\Rightarrow$   $k_{mod} = 0,65$ 

$$R_{1,d} = 117,2 \times 0,65 / 1,3 = 58,6 \text{ kN}$$

$$R_{4,d} = 33.0 \times 0.65 / 1.3 = 16.5 \Rightarrow$$
 maßgebend

oder 30,9 / 0,65 x 0,65 / 1,3 = 23,8

$$R_{M2,d} = 8.2 \times 0.65 / 1.3 = 4.1 \text{ kNm}$$

Nachweis: 
$$\left| \frac{29,0}{58,6} + \frac{1,9}{4,1} \right|^2 + \left| \frac{4,2}{16,5} \right|^2 = 0.98 \le 1$$

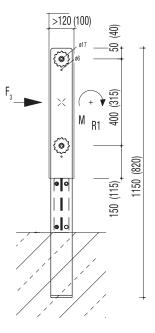
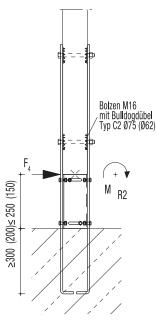
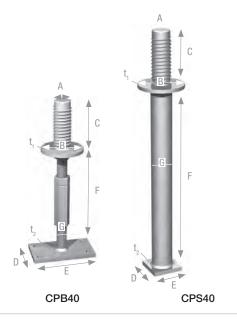




Tabelle 2




#### CMR / CMS

Die Abmessungen in Klammern gelten für CMS

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

#### Stützenfüße - CPB40 / CPS40



CPB40 / CPS40 Stützenfüße sind zur Aufnahme von vertikalen und horizontalen Lasten ausgelegt. Sie bestehen aus einem Kopfteil mit Spezialgewinde, das eine einfache Montage und hohe Tragfähigkeiten gewährleistet.

CPS40 Stützenfüße müssen mindestens 150 mm tief einbetoniert werden. Der Typ CPB40 ist zum Aufdübeln und auch nach der Montage höhenverstellbar.

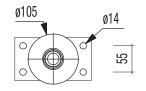
Material: Stahlsorte: S235JR gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

Befestigung: Der Anschluss an die Stütze erfolgt in eine Ø40 mm Bohrung, vorrangig mit Abbundanlagen gebohrt. Bei konventionellem Abbund empfehlen wir die Bohrschablone BTBS40. Die Befestigung der CPB40 am Fundament erfolgt mit Ankerbolzen.








ETA-07/0285 DoP-e07/0285

#### Produktabmessungen

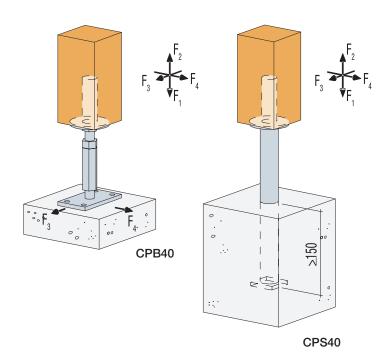
Abmessung [mm] Löcher Art. Nr. Α В C D Ε G  $t_2$ Ø Anzahl CPB40 40 105 120 90 160 190-240 24 8 10 14 4 CPS40 40 105 120 70 450 8 10 BTBS40 Bohrschablone BH54 Blendhülse







#### Anwendungshinweis:


Um einen bestmöglichen Verbund des Holzgewindes mit der Stütze zu gewährleisten, dürfen die Köpfe der Stützenfüße nur einmal in dieselbe Bohrung der Holzstütze eingedreht werden. Das Eindrehen erfolgt beim CPB40 mit einem 36er Schraubenschlüssel, beim CPS40 mit einem ¾ Zoll Vierkantantrieb.

Mit der Blendhülse BH54 lässt sich der verstellbare Teil des CPB40 verdecken.

Nach dem Einstellen der Höhe werden die beiden leicht ovalen Rohre auseinandergezogen und durch gegenläufiges Verdrehen in der Position fixiert.



BTBS40 Bohrbuchse passend für Ø40 mm und Ø24 mm



# Stützenfüße - CPB40 / CPS40



# Charakteristische Werte der Tragfähigkeit

| Charakteristische Werte der Tragfähigkeit Tabelle 2 |                    |                                                                     |                         |  |  |  |  |  |  |  |
|-----------------------------------------------------|--------------------|---------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|
| Lasteinwirkungs-<br>richtung                        | Holzabmessung b    | Charakteristische Werte<br>der Tragfähigkeit [kN] min. von<br>CPB40 |                         |  |  |  |  |  |  |  |
|                                                     | [mm]               |                                                                     |                         |  |  |  |  |  |  |  |
| F <sub>1</sub>                                      |                    | _                                                                   | 61,0 / k <sub>mod</sub> |  |  |  |  |  |  |  |
| $F_2$                                               | b ≥ 120            | 23,7                                                                |                         |  |  |  |  |  |  |  |
| F <sub>2</sub> 1)                                   |                    | 13,8                                                                | _                       |  |  |  |  |  |  |  |
| -                                                   | h <sub>CPB40</sub> |                                                                     |                         |  |  |  |  |  |  |  |
| F <sub>a</sub> und F <sub>a</sub>                   | 190                |                                                                     | 1,7 / k <sub>mod</sub>  |  |  |  |  |  |  |  |
| 1 3 ullu F <sub>4</sub>                             | 250                | _                                                                   | 1,4 / k <sub>mod</sub>  |  |  |  |  |  |  |  |

<sup>1)</sup> wenn Druck UND Zugkräfte auftreten

# Charakteristische Werte der Tragfähigkeit

| Tabelle | ( |
|---------|---|
|         |   |

| Lasteinwirkungs-<br>richtung      | Holzabmessung b | Charakteristische Werte<br>der Tragfähigkeit [kN] min. von |                          |  |  |  |
|-----------------------------------|-----------------|------------------------------------------------------------|--------------------------|--|--|--|
|                                   | [mm]            | CPS                                                        | S40                      |  |  |  |
| F <sub>1</sub>                    |                 | 170,3                                                      | 118,7 / k <sub>mod</sub> |  |  |  |
| F <sub>2</sub>                    |                 | 23,7                                                       |                          |  |  |  |
| F <sub>1</sub> <sup>1)</sup>      | b ≥ 120         | 110,7                                                      | _                        |  |  |  |
| F <sub>2</sub> <sup>1)</sup>      |                 | 13,8                                                       |                          |  |  |  |
| F <sub>3</sub> und F <sub>4</sub> |                 | 7,2                                                        | 5,2 / k <sub>mod</sub>   |  |  |  |

<sup>1)</sup> wenn Druck UND Zugkräfte auftreten

### Kombinierte Beanspruchung

Es gilt: 
$$\sum \frac{F_{i,d}}{R_{i,d}} \le 1$$

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

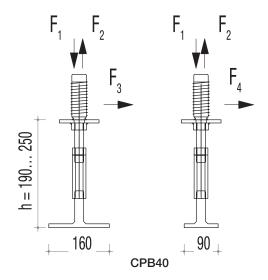
### Beispiel: CPS40

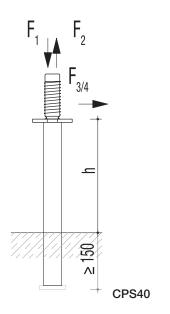
Holzstütze im Querschnitt 120x120 mm

$$F_{1,d} = 26 \text{ kN } F_{2,d} = 3,2 \text{ kN}$$

$$F_{3/4,d} = 1,6 \text{ kN}$$

Einbau im Außenbereich, NKL 3, KLED: mittel  $\Rightarrow$   $k_{mod} = 0,65$ 


$$R_{1,d} = 110,7 \times 0,65 / 1,3 = 55,4 \text{ kN}$$


$$R_{2,d} = 13.8 \times 0.65 / 1.3 = 6.9 \text{ kN}$$

 $R_{3/4,d} = min. von 7,2 x 0,65 / 1,3 = 3,6 kN$ 

oder  $5,2 / 0,65 \times 0,65 / 1,3 = 4,0 \Rightarrow$  nicht maßgebend

Nachweis: 
$$\frac{26,0}{55,4} + \frac{1,6}{3,6} = 0,91 \le 1$$
 bzw.  $\frac{3,2}{6,9} + \frac{1,6}{3,6} = 0,91 \le 1$ 





# Stützenfüße - PB3B / PB3C





PB3B und PB3C Stützenfüße erfüllen die Anforderungen an den baulichen Holzschutz gemäß DIN 68800 und die Fachregeln des Zimmererhandwerks. Aufgrund der großen Rohrlängen werden die erforderlichen 300 mm freier Abstand zur Bodenoberfläche, auch bei hohen Stützlasten, sicher eingehalten.

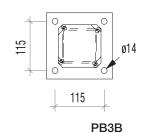
Material: Stahlsorte: S235JR gemäß EN10025.

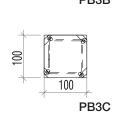
Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

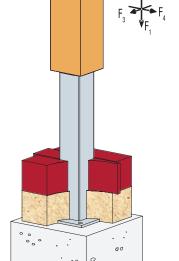
Befestigung: Der Anschluss der PB3B/PB3C Stützenfüße an die Holzstütze erfolgt mit Vollgewindeschrauben 6,0xl. Die PB3B werden an Beton mit Ankerbolzen Ø12 mm angeschlossen, während die PB3C mindestens 150 mm tief einbetoniert werden. Der Mindestquerschnitt der Holzstütze beträgt 120x120 mm.

Tabelle 1

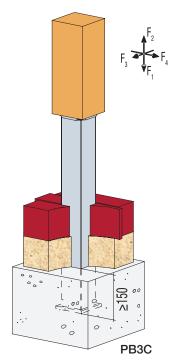


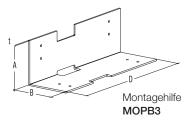


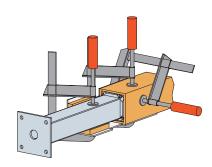




Produktabmessungen


Löcher Löcher Art. Nr. Abmessung [mm] Kopfplatte **Fußplatte** Α D Ε Ø Anzahl Ø B Anzahl PB3B 100 100 155 155 500 80 8 8 6,5 14 4 4 PB3C 100 100 100 100 670 4 6,5 80 8 4 MOPB3 120 120 400 4 6,0 8






PB3B







# Stützenfüße - PB3B / PB3C



# Charakteristische Werte der Tragfähigkeit

| Art. Nr. | Charakteris      | istische Werte der Tragfähigkeit [kN] |                      |  |  |  |  |
|----------|------------------|---------------------------------------|----------------------|--|--|--|--|
|          | R <sub>1,k</sub> | R <sub>2,k</sub>                      | $R_{3,k} = R_{4,k}$  |  |  |  |  |
| PB3B     | 202,6            | 2,83 x R <sub>ax.sc.k</sub>           | R <sub>ax.sc.k</sub> |  |  |  |  |
| PB3C     | 202,6            | 2,83 x R <sub>ax.sc.k</sub>           | R <sub>ax.sc.k</sub> |  |  |  |  |

Tabelle 2

R<sub>ax.sc.k</sub> = Zugtragfähigkeit einer Schraube in der Stütze unter einem Einschraubwinkel von 45° zur Holzfaser.

### Beispiel:

Stütze im Außenbereich aus BSH GL24 160x160 auf Betonfundament KLED: mittel, NKL 3  $\Rightarrow$   $\rm k_{mod}$  0,65

### Belastung aus der Stütze:

$$F_{1d} = 46,0 \text{ kN}$$

$$F_{2,d} = 2,7 \text{ kN}$$

$$F_{3,d} = 1,2 \text{ kN}$$

gewählter Stützenfuß: PB3B

gewählte Schraube: TTZNFS 6.0x100 IMPREG®+ Senkkopfschraube mit Teilgewinde, Gewindelänge  $I_{ef}=60$  mm,  $f_{ax,k,45^\circ}=12,5$  N/mm² gemäß ETA-21/0670  $\Rightarrow$   $P_{ax,sc,k}=6$  x 60 x 12,5= 4,5 kN

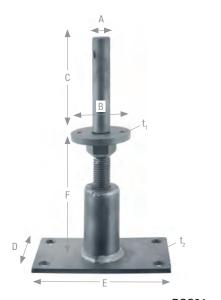
### Nachweis:

Es gilt: 
$$R_{_{i,d}} = R_{_{i,k}} \, x \, \, k_{_{mod}} \, / \, \, \gamma_{_{m}} \, und \, \, F_{_{i,d}} \, / \, \, R_{_{i,d}} \leq 1$$

$$R_{1,d} = 202,6 \times 0,65 / 1,3 = 101,3 \text{ kN}$$
  $\Rightarrow 46,0 / 101,3 = 0,45$ 

$$R_{2,d} = 2.83 \times 4.5 \times 0.65 / 1.3 = 6.4 \text{ kN} \implies 2.7 / 6.4 = 0.42$$

$$R_{3,d} = 4,5 \times 0,65 / 1,3 = 2,3 \text{ kN}$$
  $\Rightarrow 1,2/2,3 = 0,52$ 


Eine Lastüberlagerung ist nur für gleichzeitig wirkende Kräfte zu führen:

Es gilt: 
$$\sum \frac{F_{i,d}}{R_{i,d}} \le 1$$

$${\rm F_{1,d}} \: / \: {\rm R_{1,d}} \: + \: {\rm F_{3,d}} \: / \: {\rm R_{3,d}} = 0.45 \: + \: 0.52 \: = \: 0.97 \: < \: 1.0 \Longrightarrow Ok$$

$$F_{2,d} / R_{2,d} + F_{3,d} / R_{3,d} = 0,42 + 0,52 = 0,94 < 1,0 \Rightarrow Ok$$

# **SIMPSON** Strong-Tie



PGS24 Stützenfüße sind in vier Grundgrößen erhältlich und jeweils um ca. 60 mm höhenverstellbar. Sie sind zur Aufnahme von vertikalen und horizontalen Lasten geeignet. Die Auflagerscheibe ist drehbar, jedoch nicht abnehmbar. Im oberen Dorn kann bei Bedarf ein Stabdübel zur Lagesicherung oder zur Aufnahme von Zugkräften eingebaut werden.

Material: Stahlsorte: S235JR gemäß EN10025.

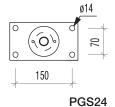
Tabelle 1

Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

Befestigung: Der Anschluss am Holz erfolgt durch Einstecken des Ø24 mm Dorns in eine gleich große Bohrung, die mit der Bohrschablone BTBS40 und dem beigefügten Einsatz erstellt werden kann, und bei Bedarf einem Ø10 mm Stabdübel rechtwinklig dazu. Zur konstruktiven Sicherung kann der PGS24 durch die Druckplatte am Hirnholz der Stütze verschraubt werden. Die Befestigung am Beton erfolgt mit Ø12 mm Ankerbolzen.

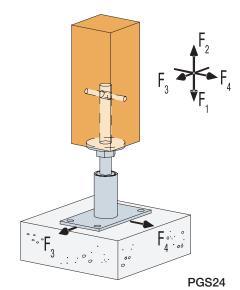









PGS24

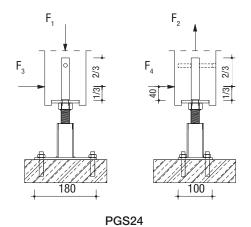

### Produktabmessungen

Art. Nr. Löcher Abmessung [mm] В C Ε F G Ø Anzahl t,  $t_2$ PGS24/130 24 80 125 100 180 130 - 195 8 14; 11; 6 4; 1; 2 PGS24/180 24 80 125 100 180 180 - 24524 8 6 14; 11; 6 4; 1; 2 PGS24/230 24 80 125 100 180 230 - 29524 8 6 14; 11; 6 4; 1; 2 PGS24/280 125 100 280 - 34524 8 6 14; 11; 6 4; 1; 2 80





BTBS40 Bohrbuchse passend für Ø40 mm und Ø24 mm




# Stützenfüße - PGS24



# Charakteristische Werte der Tragfähigkeit

| Charakteristische Werte der Tragfähigkeit Tabelle |                 |                                                            |                         |  |  |  |  |  |  |
|---------------------------------------------------|-----------------|------------------------------------------------------------|-------------------------|--|--|--|--|--|--|
| Lasteinwirkungs-<br>richtung                      | Holzabmessung b | Charakteristische Werte der<br>Tragfähigkeit [kN] min. von |                         |  |  |  |  |  |  |
|                                                   | [mm]            | PGS                                                        | S24                     |  |  |  |  |  |  |
| F <sub>1</sub>                                    | 100 x 100       | 96,1                                                       | 91,3 / k <sub>mod</sub> |  |  |  |  |  |  |
|                                                   | b = 80          | 5,0                                                        |                         |  |  |  |  |  |  |
| _                                                 | b = 100         | 5,6                                                        |                         |  |  |  |  |  |  |
| F <sub>2</sub>                                    | b = 120         | 6,4                                                        | _                       |  |  |  |  |  |  |
|                                                   | b = 140         | 7,2                                                        |                         |  |  |  |  |  |  |
|                                                   | ab Holzquerschn | itt 100 x 100 mm                                           |                         |  |  |  |  |  |  |
| F <sub>3</sub>                                    | alle Typen      | _                                                          | 2,9 / k <sub>mod</sub>  |  |  |  |  |  |  |
|                                                   | PGS24/130       |                                                            | 2,9 / k <sub>mod</sub>  |  |  |  |  |  |  |
| _                                                 | PGS24/180       |                                                            | 2,5 / k <sub>mod</sub>  |  |  |  |  |  |  |
| F <sub>4</sub>                                    | PGS24/230       | _                                                          | 2,1 / k <sub>mod</sub>  |  |  |  |  |  |  |
|                                                   | PGS24/230       |                                                            | 1,9 / k <sub>mod</sub>  |  |  |  |  |  |  |



### Kombinierte Beanspruchung

Es gilt: 
$$\sum \frac{F_{i,d}}{R_{i,d}} \le 1$$

### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Holzstütze im Querschnitt 140x140 mm, gewählter Stützenfuß: PGS24/180

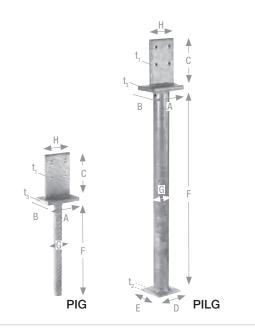
$$F_{1,d} = 26 \text{ kN}$$

$$F_{3,d} = 0.8 \text{ kN}$$

Einbau im Außenbereich, NKL 3, KLED: mittel  $\Rightarrow$   $k_{mod} = 0.65$ 

$$R_{1,d} = 96,1 \times 0,65 / 1,3 = 48,1 \text{ kN}$$

oder 91,3 / 0,65 x 0,65 / 1,3 = 70,23  $\Rightarrow$  nicht maßgebend


$$R_{3,d} = 2.9 \times 0.65 \times 0.65 / 1.3 = 2.23$$

Nachweis: 
$$\left(\frac{26,0}{48,1}\right) + \left(\frac{0,8}{2,2}\right) = 0,90 \le 1$$

# Stützenfüße - PIG / PILG



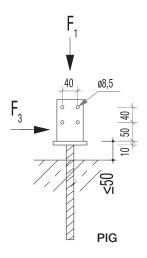
HDG 55 µm

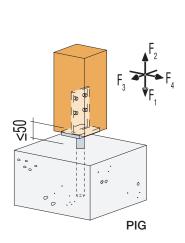


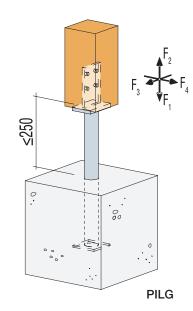
PIG / PILG Stützenfüße sind für Holzbreiten ab 60 mm geeignet und werden direkt im Beton eingesetzt. Dabei darf der maximale Abstand der Druckplatte zum Beton beim Typ PIG 50 mm und beim Typ PILG 250 mm betragen. Es können vertikale und horizontale Lasten aufgenommen werden.

Material: Stahlsorte: S235JR gemäß EN10025.

Tabelle 1


Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.


Befestigung: PIG / PILG Stützenfüße werden in die Holzstütze eingeschlitzt und mit Stabdübeln Ø8 mm am Holz befestigt. Das Einlassen der Kopfplatte im Hirnholz der Stütze wird empfohlen (siehe Anwendungshinweis unter Allgemeines zu Beginn dieses Kapitels).



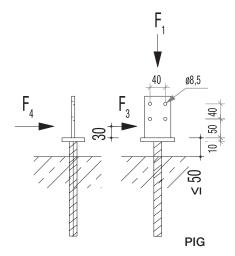

# Produktabmessungen

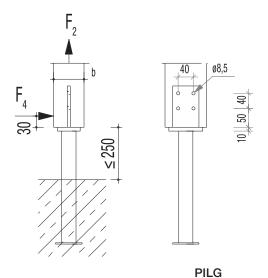
| Art. Nr. |    | Abmessung [mm] |     |    |    |     |    |    |    |                |                |     | her    |
|----------|----|----------------|-----|----|----|-----|----|----|----|----------------|----------------|-----|--------|
|          | Α  | В              | С   | D  | Е  | F   | G  | н  | t, | t <sub>2</sub> | t <sub>3</sub> | Ø   | Anzahl |
| PIG      | 90 | 60             | 110 | -  | -  | 260 | 20 | 70 | 8  | -              | 10             | 8,5 | 4      |
| PILG     | 90 | 60             | 110 | 70 | 70 | 510 | 38 | 70 | 8  | 5              | 10             | 8,5 | 4      |








Stützenfüße - PIG / PILG


# SIMPSON Strong-Tie

# Charakteristische Werte der Tragfähigkeit

| Tabelle | - |
|---------|---|
| Tabelle | _ |

| Lasteinwirkungs-<br>richtung | Holzabmessung<br>[mm] |      |                         | che Werte der<br>[kN] min. von |                        |  |
|------------------------------|-----------------------|------|-------------------------|--------------------------------|------------------------|--|
|                              | b                     | P    | IG                      | PILG                           |                        |  |
| F <sub>1</sub>               | -                     | _    | 54,5 / k <sub>mod</sub> | 90,0                           | 57 / k <sub>mod</sub>  |  |
|                              | 60                    | 13,8 |                         | 13,8                           | 13,8                   |  |
|                              | 80                    | 16,0 |                         | 16,0                           | 16,0                   |  |
| F <sub>2</sub>               | 100                   | 18,7 | _                       | 18,7                           | 18,7                   |  |
|                              | 120                   | 20,7 |                         | 20.7                           | 20,7                   |  |
|                              | 140                   | 20,7 |                         | 20,7                           | 20,1                   |  |
|                              | 60                    | 9,4  |                         | _                              |                        |  |
|                              | 80                    | 10,9 |                         |                                |                        |  |
| F <sub>3</sub>               | 100                   | 12,7 | 7,9 / k <sub>mod</sub>  |                                | $2,2/k_{mod}$          |  |
|                              | 120                   | _    |                         |                                |                        |  |
|                              | 140                   | _    |                         |                                |                        |  |
|                              | 60                    | 3,1  |                         |                                | 1,8 / k <sub>mod</sub> |  |
|                              | 80                    | 4,1  |                         |                                |                        |  |
| F <sub>4</sub>               | 100                   | 5,9  | 5,3 / k <sub>mod</sub>  | _                              | 2,0 / k <sub>mod</sub> |  |
|                              | 120                   | 7,9  | 5,4 / k <sub>mod</sub>  |                                | 2,2 / k <sub>mod</sub> |  |
|                              | 140                   | 9,4  | 5,7 / k <sub>mod</sub>  |                                | 2,4 / k <sub>mod</sub> |  |





# Kombinierte Beanspruchung

Es gilt: 
$$\sum \frac{F_{i,d}}{B} \le 1$$

### Beispiel:

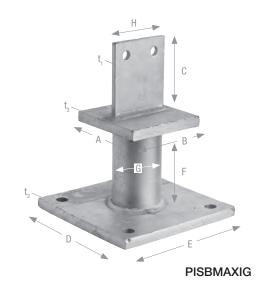
C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Holzstütze im Querschnitt 100x100 mm, gewählter Stützenfuß: PIG

$$F_{1,d} = 22 \text{ kN}$$

$$F_{4.d} = 1,3 \text{ kN}$$

Einbau im Außenbereich, NKL 3, KLED: mittel  $\Rightarrow k_{mod} = 0.7$ 


 $\rm R_{1,d}$  = 90,7 x 0,7 / 1,3 = 48,8 kN  $\Longrightarrow$  nicht maßgebend; oder 54,5 / 0,7 x 0,7 / 1,3 = 41,9 kN

$$R_{4,d} = 5.9 \times 0.7 / 1.3 = 3.2 \text{ kN}$$
  
oder  $5.0 / 0.7 \times 0.7 / 1.3 = 3.8 \text{ kN} \Rightarrow \text{nicht maßgebend}$ 

**Nachweis:** 
$$\left(\frac{22,0}{41,9}\right) + \left(\frac{1,3}{3,2}\right) = 0.93 \le 1$$

# Stützenfüße - PISBMAXIG / PISMAXIG / PISBxxG / PIS70G





PISBMAXIG / PISMAXIG / PISBxxG / PIS70G Stützenfüße sind für mittelgroße Lastbereiche und für Stützenbreiten ab 80 mm geeignet. Die MAXI-Versionen decken den großen Lastbereich ab und sind für Stützenbreiten ab 120 mm gedacht. Bei den einbetonierbaren Typen PISxxG und PISMAXIG darf der Abstand ab Oberkante Beton bis zur Druckplatte maximal 150 mm betragen.

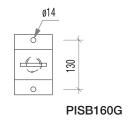
Material: Stahlsorte: S235JR gemäß EN10025.

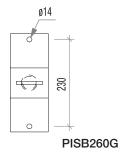
Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55  $\mu$ m gemäß EN ISO 1461.

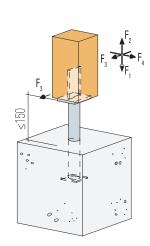
**Befestigung:** PISBxxG / PISBMAXIG werden mit Ankerbolzen M12 bzw. M16 am Fundament verankert. Alle Stützenfüße dieser Reihe werden in der Holzstütze eingeschlitzt und der Anschluss erfolgt mit Stabdübeln Ø8 mm bzw. Ø12 mm. Das Einlassen der Kopfplatte im Hirnholz der Stütze wird empfohlen.

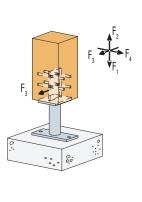


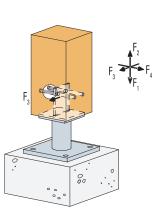


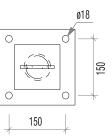




ETA-07/0285 DoP-e07/0285


# Produktabmessungen


Abmessung [mm] Löcher Art. Nr. С D Α В Ε G Н  $t_2$  $t_3$ Anzahl PIS70G-B 100 80 110 70 70 313 42 70 8 5 10 8,5 4 PISB160G-B 100 80 110 160 100 168 70 10 10 8,5; 14 4; 2 PISB260G-B 100 80 110 260 100 168 42 70 8 10 10 8,5; 14 4; 2 PISMAXIG-B 120 120 105 90 90 323 70 90 8 10 15 13 2 PISBMAXIG-B 105 200 200 148 8 15 15 2; 4 120 13; 18


Tabelle 1













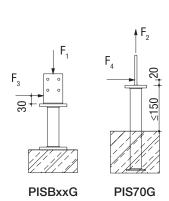

PIS70G PISMAXIG

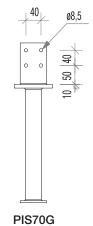
PISB160G PISB260G

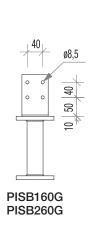
PISBMAXIG

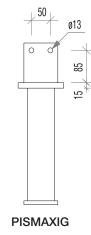
PISBMAXIG

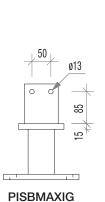
# Stützenfüße - PISBMAXIG / PISMAXIG / PISBxxG / PIS70G





# Charakteristische Werte der Tragfähigkeit


Tabelle 2


| Lasteinwirkungs-<br>richtung | Holzabmessung<br>[mm] |       | Charakteristische Werte der<br>Tragfähigkeit [kN] min. von |       |                          | Holzabmessung<br>[mm] | Charakteristische Werte der<br>Tragfähigkeit [kN] min. von |                          |             |                          |
|------------------------------|-----------------------|-------|------------------------------------------------------------|-------|--------------------------|-----------------------|------------------------------------------------------------|--------------------------|-------------|--------------------------|
|                              | b                     | PIS7  | 0G-B                                                       | PISB  | xxG-B                    | b                     | PISMA                                                      | AXIG-B                   | PISBMAXIG-B |                          |
| F <sub>1</sub>               | _                     | 142,8 | 111,8 / k <sub>mod</sub>                                   | 142,8 | 111,8 / k <sub>mod</sub> | _                     | 272,2                                                      | 187,9 / k <sub>mod</sub> | 272,2       | 256,9 / k <sub>mod</sub> |
|                              | 80                    | 16,0  | _                                                          | 16    | _                        | 120                   | 34,5                                                       | _                        | 34,5        | _                        |
| F <sub>2</sub>               | 100                   | 18,7  | _                                                          | 18,7  | _                        | 140                   | 38,5                                                       | _                        | 38,5        | -                        |
|                              | 120                   | 20,7  | _                                                          | 20,7  | _                        | 160                   | 42,1                                                       | _                        | 42,1        | -                        |
|                              | 80                    | 10,9  |                                                            | 10,9  |                          | 120                   | 22,5                                                       |                          | 22,5        | 14,1 / k <sub>mod</sub>  |
| F <sub>3</sub>               | 100                   | _     | 6,3 / k <sub>mod</sub>                                     | _     | 5,6 / k <sub>mod</sub>   | 140                   | 25,2                                                       | 24,0 / k <sub>mod</sub>  | 25,2        |                          |
|                              | 120                   | _     |                                                            | _     |                          | 160                   | 27,5                                                       |                          | 27,5        |                          |
|                              | 80                    | 4,1   | _                                                          | 4,1   | _                        | 120                   | 7,7                                                        | _                        | 7,7         | -                        |
| F <sub>4</sub>               | 100                   | 5,9   | 5,1 / k <sub>mod</sub>                                     | 5,9   | 5,1 / k <sub>mod</sub>   | 140                   | 9,9                                                        | _                        | 9,9         | _                        |
|                              | 120                   | 7,0   | 5,5 / <sub>mod</sub>                                       | 7,9   | 5,5 / k <sub>mod</sub>   | 160                   | 12,3                                                       | -                        | 12,3        | _                        |


### Definition des Lastangriffs











Kombinierte Beanspruchung

Es gilt: 
$$\sum \frac{F_{i,d}}{R_{i,d}} \le 1$$

### Beispiel:

Holzstütze im Querschnitt 120x120 mm, gewählter Stützenfuß: PISB160G

$$F_{1,d} = 46 \text{ kN}$$

$$F_{3,d} = 1,3 \text{ kN}$$

Einbau im Außenbereich, NKL 3, KLED: mittel  $\Rightarrow$   $k_{mod} = 0,65$ 

 $R_{1.d} = 142.8 \times 0.65 / 1.3 = 71.4 \text{ kN oder } 101.9 / 0.65 \times 0.65 / 1.3 = 78.4 \text{ kN} \Rightarrow \text{nicht maßgebend}$ 

 $R_{3,d} = 11 \times 0,65 / 1,3 = 5,5 \text{ kN} \Rightarrow \text{nicht maßgebend; oder 6,1 / 0,65 x 0,65 / 1,3 = 4,7 kN}$ 

Nachweis: 
$$\left(\frac{46,0}{71,4}\right) + \left(\frac{1,3}{4,7}\right) = 0.92 \le 1$$

# Stützenfüße - PJPBG / PJPSG



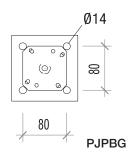
HDG 55 µm



PJPBG / PJPSG Stützenfüße sind für Holzbreiten ab 100 mm geeignet. PJPSG Stützenfüße werden direkt im Beton eingesetzt. Dabei muss die Gewindestange mind. 200 mm im Beton einbinden. Eine Höhenverstellung ist mit der Langmutter auch nach der Montage noch möglich. Es können vertikale und horizontale Lasten aufgenommen werden.

Material: Stahlsorte: S235JR gemäß EN10025.

Tabelle 1


Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

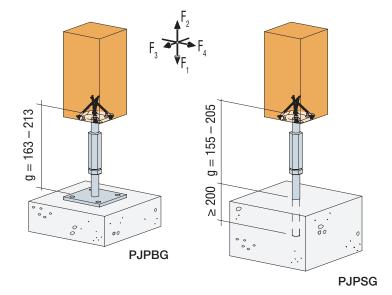
**Befestigung:** PJPBG werden mit  $\emptyset$ 12 mm Ankerbolzen am Fundament befestigt. Der Anschluss an das Holz erfolgt mit 6,0x60 mm Vollgewindeschrauben, die unter 45° eingedreht werden.



### Produktabmessungen

| Art. Nr. |    |    | Löcher |     |           |    |    |                |         |        |
|----------|----|----|--------|-----|-----------|----|----|----------------|---------|--------|
|          | Α  | В  | D      | E   | F         | G  | t, | t <sub>2</sub> | Ø       | Anzahl |
| PJPBG    | 80 | 80 | 120    | 120 | 163 – 213 | 20 | 10 | 8              | 6,5; 14 | 6; 4   |
| PJPSG    | 80 | 80 | -      | _   | 355 – 405 | 20 | 10 | _              | 6,5     | 6      |



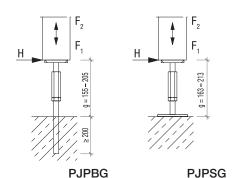

### Anwendungshinweis:

Stützenfüße

Zur Befestigung der Kopfplatten an der Stütze werden Simpson FTETL 6,0x60 Vollgewindeschrauben, mit einer Zusatzbeschichtung zur Erhöhung des Korrosionsschutzes empfohlen.

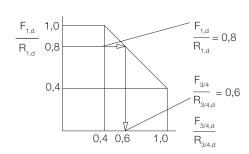
Die Kopfplatte verfügt über zwei zusätzliche Bohrungen Ø6,5 mm, durch die zwei Schrauben zur Montagehilfe faserparallel eingedreht werden können.

Statisch relevant sind iedoch nur die vier Schrauben. die an den Ecken unter 45° eingebracht werden.




# Stützenfüße - PJPBG / PJPSG




# Charakteristische Werte der Tragfähigkeit

| Lasteinwirkungs-<br>richtung |                  | Charakteristische Wer<br>Tragfähigkeit [kN] mir<br>PJPSG und PJPBG | . von                   |  |  |
|------------------------------|------------------|--------------------------------------------------------------------|-------------------------|--|--|
| F <sub>1</sub>               | _                | _                                                                  | 54,5 / k <sub>mod</sub> |  |  |
| F <sub>2</sub>               | _                | 7,6                                                                | _                       |  |  |
| F <sub>3/4</sub>             | g <sub>min</sub> | 2,7                                                                | 1,7 / k <sub>mod</sub>  |  |  |
| 3/4                          | a                | _,.                                                                | 1.4 / k                 |  |  |



### Kombinierte Beanspruchung

# Es gilt bei $F_1$ und $F_{3/4}$ :



# Es gilt bei $F_2$ und $F_{3/4}$ :

Tabelle 2

$$\sum \frac{F_{i,d}}{R_{i,d}} \le \frac{1}{2}$$

### Beispiel 1:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Wenn  $F_{1,d}$  /  $R_{1,d}$  = 0,8 ist, darf  $F_{3/4,d}$  /  $R_{3/4,d}$  max. 0,6 betragen

### Beispiel 2:

Holzstütze im Querschnitt 120x120 mm, PJPSG, g = 155 mm

$$F_{1,d} = 33,5 \text{ kN}$$

$$F_{3.d} = 0.8 \text{ kN}$$

Einbau im Außenbereich, NKL 3, KLED: mittel  $\Rightarrow$   $k_{mod} = 0,65$ 

$$R_{1,d} = 54,5 / 0,65 \times 0,65 / 1,3 = 41,9 \text{ kN}$$

$$R_{3d} = 2.7 \times 0.65 / 1.3 = 1.35 \Rightarrow$$
 nicht maßgebend

oder 1,7 / 0,65 x 0,65 / 1,30 = 1,3 kN

Nachweis: 
$$\frac{33,5}{41,9} = 0.8 \Rightarrow \frac{0.8}{1.3} = 0.6 \Rightarrow \text{Ok}$$
 Siehe Diagramm

# Stützenfüße - PJIBG / PJISG





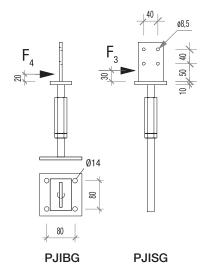
PJIBG / PJISG Stützenfüße sind für Holzbreiten ab 80 mm geeignet. PJISG Stützenfüße werden direkt im Beton eingesetzt. Dabei muss die Gewindestange mind. 200 mm im Beton einbinden. Eine Höhenverstellung ist mit der Langmutter auch nach der Montage noch möglich. Es können vertikale und horizontale Lasten aufgenommen werden.

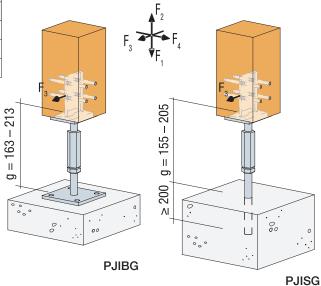
Material: Stahlsorte: S235JR gemäß EN10025.

Tabelle 1

Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

Befestigung: Der Anschluss am Holz erfolgt mit Stabdübeln Ø8 mm in Länge der Holzbreite. PJIBG werden mit Ø12 mm Ankerbolzen am Fundament befestigt.





# HDG 55 µm ETA-07/0285 DoP-e07/0285

### Produktabmessungen

| Art. Nr. |    |    | Löc | her |     |           |    |    |    |                |         |        |
|----------|----|----|-----|-----|-----|-----------|----|----|----|----------------|---------|--------|
|          | А  | В  | С   | D   | E   | F         | G  | Н  | t, | t <sub>2</sub> | Ø       | Anzahl |
| PJIBG    | 90 | 60 | 110 | 120 | 120 | 163 – 213 | 20 | 70 | 8  | 8              | 8,5; 14 | 4; 4   |
| PJISG    | 90 | 60 | 110 | -   | _   | 355 – 405 | 20 | 70 | 8  | 10             | 8,5     | -      |

| Lasteinwirkungs-<br>richtung           | Holzabmessung<br>[mm] |          | teristische Werte der<br>higkeit [kN] min. von |  |  |
|----------------------------------------|-----------------------|----------|------------------------------------------------|--|--|
|                                        | b                     | PJISG ui | nd PJIBG                                       |  |  |
| F <sub>1</sub>                         | _                     | 90,7     | 54,5 / k <sub>mod</sub>                        |  |  |
|                                        | 80                    | 16,0     |                                                |  |  |
| $F_2$                                  | 100                   | 18,7     | _                                              |  |  |
|                                        | 120                   | 20,7     |                                                |  |  |
| E                                      | bei g <sub>min</sub>  |          | 1,4 / k <sub>mod</sub>                         |  |  |
| F <sub>3</sub>                         | bei g <sub>max</sub>  | _        | 1,1 / k <sub>mod</sub>                         |  |  |
|                                        | 80                    | 2,0      | 1,6 / k <sub>mod</sub>                         |  |  |
| $F_4_{bei}g_{min}$                     | 100                   | 2,3      | 1,8 / k <sub>mod</sub>                         |  |  |
| J Jmin                                 | 120                   | 2,6      | 1,8 / k <sub>mod</sub>                         |  |  |
|                                        | 80                    | 1,7      | 1,4 / k <sub>mod</sub>                         |  |  |
| F <sub>4</sub><br>bei g <sub>max</sub> | 100                   | 2,0      | 1,4 / k <sub>mod</sub>                         |  |  |
| max                                    | 120                   | 2,1      | 1,4 / k <sub>mod</sub>                         |  |  |





SIMPSON

# Stützenfüße - PLxxG



PLxxG Stützenfüße werden direkt im Beton eingesetzt und können Druck-, Zugund horizontale Kräfte aufnehmen. Der Abstand der Unterkante des U-Profils zum Beton darf bis 250 mm betragen.

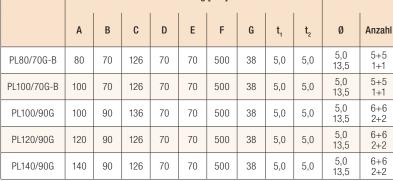
Material: Stahlsorte: S235JR gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundumfeuerverzinkt; Zinkschichtdicke ca. 55 μm gemäß EN ISO 1461.

Befestigung: Der Anschluss am Holz erfolgt mit CNA4,0x40 Kammnägeln, CSA Verbinderschrauben oder konstruktiv mit Bolzen.





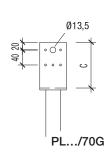


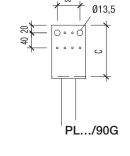

ETA-07/0285 DoP-e07/0285

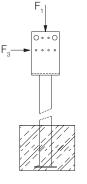
# Produktabmessungen

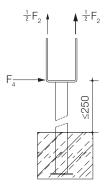
C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

| Produktal   | ome | ssur                            |     | 7      | Tabelle 1 |     |    |     |                |             |            |
|-------------|-----|---------------------------------|-----|--------|-----------|-----|----|-----|----------------|-------------|------------|
| Art. Nr.    |     |                                 |     | Löcher |           |     |    |     |                |             |            |
|             | А   | В                               | С   | D      | E         | F   | G  | t,  | t <sub>2</sub> | Ø           | Anzahl     |
| PL80/70G-B  | 80  | 70                              | 126 | 70     | 70        | 500 | 38 | 5,0 | 5,0            | 5,0<br>13,5 | 5+5<br>1+1 |
| PL100/70G-B | 100 | 70                              | 126 | 70     | 70        | 500 | 38 | 5,0 | 5,0            | 5,0<br>13,5 | 5+5<br>1+1 |
| PL100/90G   | 100 | 100 90 136 70 70 500 38 5,0 5,0 |     |        |           |     |    |     |                | 5,0<br>13,5 | 6+6<br>2+2 |
| PL120/90G   | 120 | 90                              | 126 | 70     | 70        | 500 | 38 | 5,0 | 5,0            | 5,0<br>13,5 | 6+6<br>2+2 |
| PL140/90G   | 140 | 90                              | 126 | 70     | 70        | 500 | 38 | 5,0 | 5,0            | 5,0<br>13,5 | 6+6<br>2+2 |

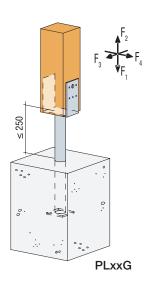




Charakteristische Werte der Tragfähigkeit Tabelle 2


| Lasteinwirkungs-<br>richtung | Тур       | Charakteristische Werte der<br>Tragfähigkeit [kN] min. von<br>PLxxG |                         |  |
|------------------------------|-----------|---------------------------------------------------------------------|-------------------------|--|
| F <sub>1</sub>               | alle      | _                                                                   | 57,1 / k <sub>mod</sub> |  |
|                              | PL80/70G  | 18,4                                                                | 17,3 / k <sub>mod</sub> |  |
|                              | PL100/70G | 18,4                                                                | 11,7 / k <sub>mod</sub> |  |
| _                            | PL90/90G  | 22,0                                                                | 18,0 / k <sub>mod</sub> |  |
| F <sub>2</sub>               | PL100/90G | 22,0                                                                | 15,1 / k <sub>mod</sub> |  |
|                              | PL120/90G | 19,0                                                                | 11,4 / k <sub>mod</sub> |  |
|                              | PL140/90G | _                                                                   | 9,2 / k <sub>mod</sub>  |  |
| F <sub>3</sub>               | alle      | _                                                                   | 2,8 / k <sub>mod</sub>  |  |
| F <sub>4</sub>               | alle      | _                                                                   | 3,5 / k <sub>mod</sub>  |  |


# Kombinierte Beanspruchung

Es gilt: 
$$\sum \frac{F_{i,d}}{R_{i,d}} \le 1$$










**PLxxG** 



# Stützenfüße – PLBxxG / PLSxxG





PLBxxG / PLSxxG Stützenfüße sind höhenverstellbar und zur Aufnahme von Riegeln oder Stützen geeignet. Die verschiedenen Winkelvarianten gewähren eine passende Größe für unterschiedliche Riegelhöhen. PLSxxG Stützenfüße werden mind. 170 mm tief einbetoniert. Der Abstand ab Oberkante Fundament bis zur Auflagerfläche darf maximal 105 mm betragen.

Material: Stahlsorte: S235JR gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

Befestigung: PLBxxG Stützenfüße werden mit Ankerbolzen auf dem Fundament befestigt. Die Montage der PLBxxG und PLSxxG am Holz erfolgt über CNA Kammnägel oder CSA Verbinderschrauben. Im Holz ist zur Aufnahme der Gewindestange eine Bohrung Ø16 mm erforderlich.









### Produktabmessungen

| Produktab    | Produktabmessungen Tabelle 1 |    |     |        |    |         |    |    |                |          |            |  |
|--------------|------------------------------|----|-----|--------|----|---------|----|----|----------------|----------|------------|--|
| Art. Nr.     |                              |    |     | Löcher |    |         |    |    |                |          |            |  |
|              | А                            | В  | С   | D      | E  | F       | G  | t, | t <sub>2</sub> | Ø        | Anzahl     |  |
| PLB60/65G-B  | 60                           | 70 | 65  | 90     | 90 | 45–105  | 16 | 4  | 5              | 5; 9; 12 | 5; 2; 4    |  |
| PLB80/90G-B  | 80                           | 70 | 90  | 90     | 90 | 45–105  | 16 | 4  | 5              | 5; 9; 12 | 5; 2; 4    |  |
| PLB80/190G-B | 80                           | 70 | 190 | 90     | 90 | 45–105  | 16 | 4  | 5              | 5; 9; 11 | 9; 2; 2; 4 |  |
| PLS60/65G-B  | 60                           | 70 | 65  | _      | _  | 215–270 | 16 | 4  | _              | 5; 9;    | 5; 2       |  |
| PLS80/90G-B  | 80                           | 70 | 90  | _      | _  | 215–270 | 16 | 4  | -              | 5; 9;    | 5; 2       |  |
| PLS80/190G-B | 80                           | 70 | 190 | _      | _  | 215–270 | 16 | 4  | _              | 5; 9; 11 | 9; 2; 2    |  |

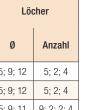
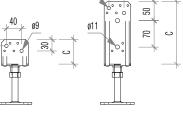
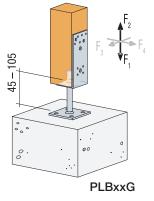
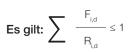
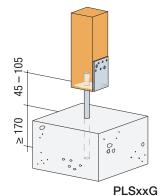




Tabelle 2







**PLBxxG** 

**PLBxxG** 

| Lasteinwirkungs-<br>richtung | Тур      | Anschluss an     | Charakteristische Wert<br>Tragfähigkeit [kN] min.<br>PLBxxG und PLSxxG |                         |  |  |
|------------------------------|----------|------------------|------------------------------------------------------------------------|-------------------------|--|--|
| г                            | alla     | Stütze           | 50,8                                                                   | 36,4 / k <sub>mod</sub> |  |  |
| F <sub>1</sub>               | alle     | Balken           | 20,1                                                                   | 20,2 / k <sub>mod</sub> |  |  |
|                              | -        | Befestigung      | an Stütze oder Balken                                                  |                         |  |  |
|                              | 0005     | 3 CNA4,0x40      | ΕΛ                                                                     | 2 = /                   |  |  |
|                              | 60 x 65  | 2 CSA5,0x35      | 5,4                                                                    | 3,5 / k <sub>mod</sub>  |  |  |
| F <sub>2</sub>               | 80 x 90  | 2 CNA4,0x40      |                                                                        | 0.074                   |  |  |
|                              | 00 x 90  | 2 CSA5,0x35      | _                                                                      | $2,3 / k_{mod}$         |  |  |
|                              | 80 x 190 | 2 CNA4,0x40      | 2,8                                                                    | 22/4                    |  |  |
|                              | 00 x 190 | 2 Schrauben 8x60 | ۷,0                                                                    | $2,3 / k_{mod}$         |  |  |







# Stützenfüße - PP18/24xy





PP18/24xy Stützenfüße sind für Stützen ab 100mm Breite geeignet. Eine Höhenverstellung ist im Bereich von 180-240 mm möglich. Durch die Lastaufnahme in alle Richtungen sind die Stützenfüße vielseitig einsetzbar.

Material: Stahlsorte: S235JR gemäß EN10025.

Korrosionsschutz: Duplexbeschichtung, bestehend aus einem galvanischen Zink-Nickel-Überzug und einer in schwarzen (PP18/24BB) oder silbergrauen PB18/24BZ) erhältlichen Topcoat-Versiegelung. Beschichtungsdicke des TopCoat ≥ 12 µm. Der PP18/24BG und PP18/24SG sind mit  $\approx 55~\mu m$  Zinkschichtdicke stückverzinkt und für die NKL 3 zugelassen.

Befestigung: PP18/24xy Stützenfüße werden durch die Kopfplatte mit vier schräg eingedrehten Schrauben an der Stütze befestigt. Zur Lagesicherung bei der Montage dienen zwei zusätzliche Bohren Ø 6,5 mm, durch die zwei Schrauben faserparallel in die Stütze eingedreht werden. Der Anschluss an Beton erfolgt mit vier Ankerbolzen Ø10 mm, bzw. durch direktes Einbetonieren.





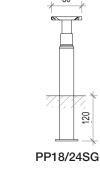
**HDG** 55 µm

PP18/24BG PP18/24SG

# Produktahmessungen

| FTOUUNIA                | DITTE |    |     | rabelle i |         |    |    |                |          |        |
|-------------------------|-------|----|-----|-----------|---------|----|----|----------------|----------|--------|
| Art. Nr.                |       |    |     | Löcher    |         |    |    |                |          |        |
|                         | А     | В  | D   | E         | F       | G  | t, | t <sub>2</sub> | Ø        | Anzahl |
| PP18/24BB <sup>1)</sup> |       |    |     |           |         |    |    |                |          |        |
| PP18/24BZ <sup>1)</sup> | 80    | 80 | 130 | 130       | 180-240 | 24 | 8  | 4              | 6,5 ; 12 | 6;4    |
| PP18/24BG <sup>2)</sup> | 00    | 00 |     |           |         | 24 | 0  | 4              |          |        |
| PP18/24SG <sup>2)</sup> |       |    | ~70 | ~70       | 300-360 |    |    |                | 6,5      | 6      |

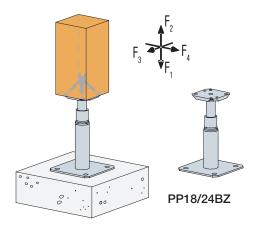


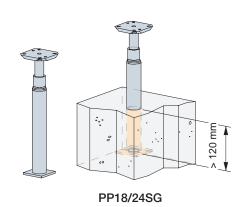

<sup>&</sup>lt;sup>2)</sup> Stückverzinkt ≈ 55 µm

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

### Tahelle 1

Tabelle 2






PP18/24Bx

| Art. Nr.  |        | bindungsmittel<br>an der Stütze   | Charakteristische Werte der Tragfähigkeit [kN |                               |                                               |  |  |  |
|-----------|--------|-----------------------------------|-----------------------------------------------|-------------------------------|-----------------------------------------------|--|--|--|
|           | Anzahl | Typ / Artikel                     | R <sub>1,k</sub>                              | R <sub>2,k</sub>              | $\boldsymbol{R}_{3,k} = \boldsymbol{R}_{4,k}$ |  |  |  |
| PP18/24BB |        | TTZNFS6,0x100                     |                                               |                               | min unn                                       |  |  |  |
| PP18/24BZ | 4      | Senkkopfschraube<br>mit IMPREG®x4 | min von:                                      | min von:                      | min von:<br>3,2; 2,0 / k <sub>mod</sub>       |  |  |  |
| PP18/24BG | 4      | Beschichtung                      | 100,5 k <sub>mod</sub> 0,6;                   | 12,7; 10,3 / k <sub>mod</sub> | 3,2, 2,07 K <sub>mod</sub>                    |  |  |  |
| PP18/24SG |        | (Art. Nr. 74497)                  | 93,0 / k <sub>mod</sub>                       |                               | 3,2                                           |  |  |  |





# Stützenfüße – PPCxx/yyBZ



PPC14/20BZ

PPCxx/yyBZ Stützenfüße sind für Stützen ab 100 mm Breite geeignet und auch nach der Montage noch höhenjustierbar. Der Verstellbereich beträgt bei allen vier Grundhöhen ~ 6 cm. PPCxx/yyBZ Stützenfüße sind zur Aufnahme von Lasten in allen Richtungen geeignet.

Material: Stahlsorte: S235JR gemäß EN10025.

Korrosionsschutz: Duplexbeschichtung, bestehend aus einem galvanischen Zink-Nickel-Überzug und einer silbergrauen Topcoat-Versiegelung.

Beschichtungsdicke des TopCoat ≥ 12 µm.

Tabelle 1

Befestigung: PPC Stützenfüße werden durch die Kopfplatte mit vier schräg eingedrehten Schrauben an der Stütze befestigt. Dabei verhindert ein Zentrierdorn d = 16 mm das Verrutschen des Stützenfußes. Der Anschluss an Beton erfolgt mit vier Ankerbolzen Ø 10 mm.



### Produktabmessungen

| Art. Nr.   |    |    | Löcher |     |         |    |    |                |          |        |
|------------|----|----|--------|-----|---------|----|----|----------------|----------|--------|
|            | А  | В  | D      | Е   | F       | G  | t, | t <sub>2</sub> | Ø        | Anzahl |
| PPC14/20BZ | 80 | 80 | 130    | 130 | 140-200 | 24 | 8  | 4              | 6,5 ; 12 | 6 ; 4  |
| PPC19/25BZ | 80 | 80 | 130    | 130 | 190-250 | 24 | 8  | 4              | 6,5 ; 12 | 6;4    |
| PPC24/30BZ | 80 | 80 | 130    | 130 | 240-300 | 24 | 8  | 4              | 6,5 ; 12 | 6;4    |
| PPC29/35BZ | 80 | 80 | 130    | 130 | 290-350 | 24 | 8  | 4              | 6,5 ; 12 | 6 ; 4  |

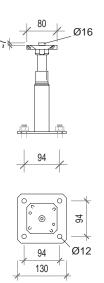
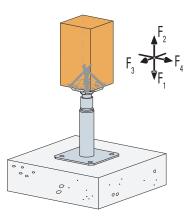
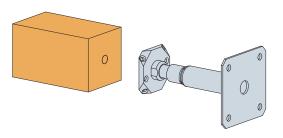




Tabelle 2

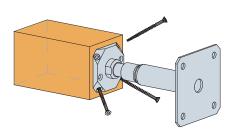
| Art. Nr.   |        | rbindungsmittel<br>an der Stütze                                                       | Charakterist                 | gfähigkeit [kN]             |                                         |
|------------|--------|----------------------------------------------------------------------------------------|------------------------------|-----------------------------|-----------------------------------------|
|            | Anzahl | Typ / Artikel                                                                          | R <sub>1,k</sub>             | $R_{2,k}$                   | $R_{3,k} = R_{4,k}$                     |
| PPC14/20BZ |        |                                                                                        |                              |                             | min von:<br>3,2; 2,5 / k <sub>mod</sub> |
| PPC19/25BZ | 4      | TTZNFS6,0x100<br>Senkkopfschraube<br>mit IMPREG®x4<br>Beschichtung<br>(Art. Nr. 74497) | min von:                     | min von:                    | min von:<br>3,2; 2,0 / k <sub>mod</sub> |
| PPC24/30BZ | 4      |                                                                                        | 130; 93,0 / k <sub>mod</sub> | 12,7; 10,3/k <sub>mod</sub> | 1,6 / k <sub>mod</sub>                  |
| PPC29/35BZ |        |                                                                                        |                              |                             | 1,4 / k <sub>mod</sub>                  |



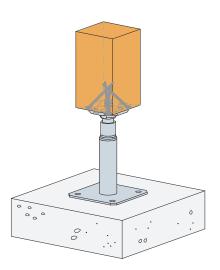

PPC19/25BZ


# Stützenfüße – PPCxx/yyBZ




# Variante einer möglichen Montage




Anreißen und einbringen einer Zentrumsbohrung Ø 16 mm, Bohrtiefe ca. 12-15 mm



Aufstecken des PPCxx/yyBZ mit dem Zentrierdorn in die Zentrumsbohrung



Einbringen der 4 Stk. Senkkopfschrauben TTZNFS6,0x100 in den abgeschrägten Ecken der Kopfplatte

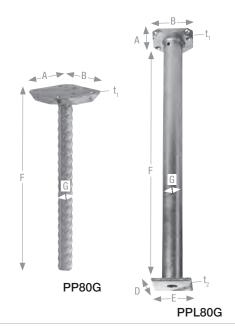


Ausrichten und grobe Höhenjustage der Stütze. Befestigung am Untergrund und endgültige Höhenjustierung. (Maulschlüssel SW = 32 mm)

### Anwendungshinweis:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Wird die Holzstütze auf einen eingemessenen und am Untergrund bereits befestigten Stützenfuß aufgestellt, unterstützt der Zentrierdorn die Positionierung und Verschraubung in gleicher Weise wie bei einer Vormontage.


# Passende Verbindungsmittel

Tahalla 3

| absorbe verbindengsmitter |                                  |         |          |                |             |  |  |  |  |
|---------------------------|----------------------------------|---------|----------|----------------|-------------|--|--|--|--|
| Art. Nr.                  | Verbindungsmittel<br>passend für | Abmessu | ung [mm] | Bohrtiefe [mm] | Bohr-Ø [mm] |  |  |  |  |
|                           |                                  | Ø       | L        |                |             |  |  |  |  |
| 74497                     | Kopfplatte                       | 6       | 100      | -              | -           |  |  |  |  |
| BOAXII10060010            | Bodenplatte                      | 10      | 92       | 75             | 10          |  |  |  |  |

# Stützenfüße - PP80G / PPL80G





PP80G / PPL80G Stützenfüße sind für Holzbreiten ab 100 mm geeignet und werden direkt im Beton eingesetzt. Dabei darf der maximale Abstand der Druckplatte zum Beton beim Typ PP80G 50 mm und beim Typ PPL80G 250 mm betragen. Es können vertikale und horizontale Lasten aufgenommen werden.

Material: Stahlsorte: S235JR gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

Befestigung: Der Anschluss am Holz erfolgt mit Senkkopfschrauben 6,0x60 mm mit Vollgewinde, die unter 45° in die Stütze eingeschraubt werden. Das Einlassen der Kopfplatte im Hirnholz der Stütze wird empfohlen.



PPL80G





# Produktabmessungen

Tabelle 1

| Art. Nr. |    |    | Löcher |    |     |    |    |                |     |        |
|----------|----|----|--------|----|-----|----|----|----------------|-----|--------|
|          | А  | В  | D      | E  | F   | G  | t, | t <sub>2</sub> | Ø   | Anzahl |
| PP80G    | 80 | 80 | -      | -  | 260 | 20 | 10 | -              | 6,5 | 6      |
| PPL80G   | 80 | 80 | 70     | 70 | 510 | 38 | 10 | 5              | 6,5 | 6      |

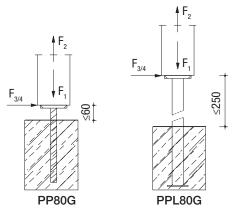
### Anwendungshinweis:

Zur Befestigung der Kopfplatten an der Stütze werden Simpson FTETL 6,0x60 Vollgewindeschrauben, mit einer Zusatzbeschichtung zur Erhöhung des Korrosionsschutzes empfohlen.

Die Kopfplatte verfügt über zwei zusätzliche Bohrungen  $\emptyset$ 6,5 mm, durch die zwei Schrauben zur Montagehilfe faserparallel eingedreht werden können.

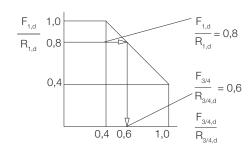
Statisch relevant sind jedoch nur die vier Schrauben, die an den Ecken unter 45° eingebracht werden.




# Stützenfüße - PP80G / PPL80G



# Charakteristische Werte der Tragfähigkeit


| Lasteinwirkungs-<br>richtung | Тур    | Charakteristische Werte der<br>Tragfähigkeit [kN] min. von<br>PP80G und PPL80G |                         |  |  |
|------------------------------|--------|--------------------------------------------------------------------------------|-------------------------|--|--|
| F,                           | PP80G  |                                                                                | 31,6 / k <sub>mod</sub> |  |  |
| r <sub>1</sub>               | PPL80G | _                                                                              | 57,1 / k <sub>mod</sub> |  |  |
| г                            | PP80G  | 7,6                                                                            | _                       |  |  |
| F <sub>2</sub>               | PPL80G | 7,0                                                                            |                         |  |  |
| Г                            | PP80G  | 2,7                                                                            | _                       |  |  |
| F <sub>3/4</sub>             | PPL80G | ۷,7                                                                            | 2,5 / k <sub>mod</sub>  |  |  |

Die angegebenen Werte gelten für FTETL6,0x60 Vollgewindeschrauben.



### Kombinierte Beanspruchung

### Es gilt bei F, und F3/4:



### Es gilt bei F<sub>2</sub> und F<sub>3/4</sub>:

$$\sum \frac{\mathsf{F}_{\mathsf{i},\mathsf{d}}}{\mathsf{R}_{\mathsf{d}}} \leq 1$$

Tabelle 2

## Beispiel 1:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Wenn  $F_{1,d}$  /  $R_{1,d}$  = 0,8 ist, darf  $F_{3/4,d}$  /  $R_{3/4,d}$  max. 0,6 betragen

### Beispiel 2:

Holzstütze im Querschnitt 120x120 mm, gewählter Stützenfuß: PP80G, Abstand über Beton = 50 mm

$$F_{1,d} = 19,0 \text{ kN}$$

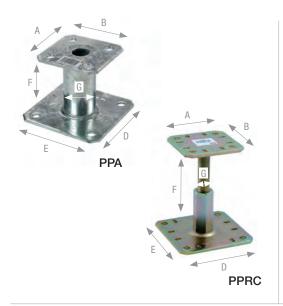
$$F_{3,d} = 0.8 \text{ kN}$$

Einbau im Außenbereich, NKL 3, KLED: mittel  $\Rightarrow$   $k_{mod} = 0,65$ 

$$R_{1,d} = 31,6 / 0,65 \times 0,65 / 1,3 = 24,3 \text{ kN}$$

$$R_{_{3,d}} = 2.7 \times 0.65 / 1.3 = 1.4 \text{ kN} \Longrightarrow \text{maßgebend}$$

$$R_{3,d} = 2.5 / 0.65 \times 0.65 / 1.3 = 1.9 \text{ kN}$$


Nachweis: 
$$\frac{19,0}{24,3} = 0,8 \Rightarrow \frac{0,8}{1,4} = 0,6 \Rightarrow \text{Ok}$$
 Siehe Diagramm

Die Verankerung im Beton ist gesondert nachzuweisen. Z.B. mit unserem Bemessungsprogramm "Anchor Designer™"



# Stützenfüße - PPA / PPRC





PPA / PPRC Stützenfüße sind für Stützen oder Wandriegel ab 100 mm Breite geeignet. PPRC Stützenfüße sind auch nach der Montage noch höhenverstellbar. Die Stützenfüße können vertikale Lasten aufnehmen.

Material: Stahlsorte: S235JR gemäß EN10025.

### Korrosionsschutz:

**PPA:** nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55  $\mu$ m gemäß EN ISO 1461.

PPRC: galvanisch verzinkt und chromatiert Zn12/C.

Befestigung: Der Anschluss am Holz erfolgt mit Schrauben Ø10 mm, am Beton mit Ankerbolzen Ø10 mm.





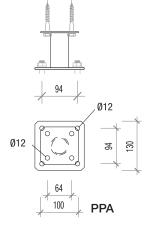






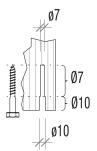
PPA

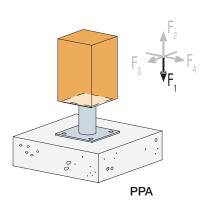
Produktabmessungen

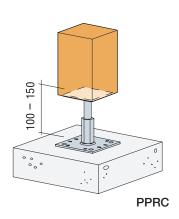

| Art. Nr. |     |     | Löc | her |         |    |    |                |            |            |
|----------|-----|-----|-----|-----|---------|----|----|----------------|------------|------------|
|          | А   | В   | D   | Е   | F       | G  | t, | t <sub>2</sub> | Ø          | Anzahl     |
| PPA150   | 100 | 100 | 130 | 130 | 150     | 48 | 4  | 4              | 12         | 4; 4       |
| PPRC     | 100 | 100 | 130 | 130 | 100-150 | 20 | 5  | 5              | 12; 6 x 12 | 4; 4; 8; 8 |

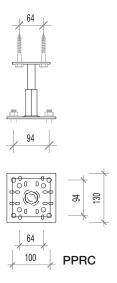
# Charakteristische Werte der Tragfähigkeit

| Lasteinwirkungs-<br>richtung | Charakteristische Werte der<br>Tragfähigkeit [kN] min. von |            |  |  |  |
|------------------------------|------------------------------------------------------------|------------|--|--|--|
|                              | PPA                                                        | PPRC       |  |  |  |
| _                            | 70.4.41.04                                                 | 54.4.41 05 |  |  |  |


### Tabelle 2


Tabelle 1





### Anwendungshinweis:

Die Bohrungen für die Holzschrauben in der Stütze sollten auf der ganzen Länge mit Ø 7 mm und auf Schraubenschaftlänge mit Ø10 mm vorgebohrt werden. Die Schrauben dienen zur Lagesicherung.









# Stützenfüße - PPBxxG / PPS80G





PPBxxG / PPS80G Stützenfüße sind höhenverstellbar und können vertikal belastet werden. Der PPS80G Stützenfuß muss mindestens 200 mm tief einbetoniert werden. Der Abstand ab Oberkante Beton bis zur Kopfplatte darf bei beiden Typen maximal 100 mm betragen. Die Kopfplatten sind lose

Material: Stahlsorte: S235JR gemäß EN10025.

Tabelle 1

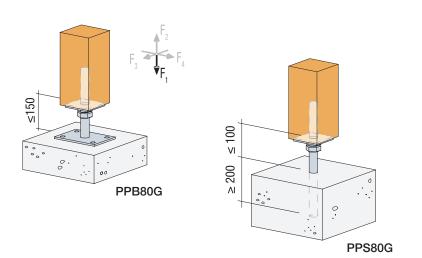
Tabelle 2

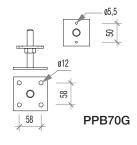
Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

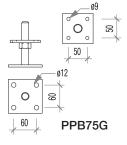
Befestigung: PPBxxG Stützenfüße werden auf dem Fundament mit Ankerbolzen befestigt. Im Holz erfolgt lediglich eine Ø16 mm bzw. Ø20 mm Zentrumsbohrung zur Aufnahme der überstehenden Gewindestücke. Zur Lagesicherung kann die Kopfplatte am Hirnholz verschraubt werden.

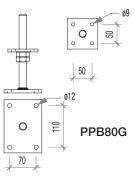


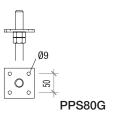
### Produktabmessungen


|                        | 5  |    |       |     |        |        |    |    |                |         |        |
|------------------------|----|----|-------|-----|--------|--------|----|----|----------------|---------|--------|
| Art. Nr.               |    |    |       |     | Löcher |        |    |    |                |         |        |
|                        | А  | В  | С     | D   | E      | F      | G  | t, | t <sub>2</sub> | Ø       | Anzahl |
| PPB70G 1)              | 70 | 70 | 5-75  | 90  | 90     | 30-100 | 16 | 6  | 5              | 5,5; 12 | 2; 4   |
| PPB75G 1)              | 80 | 80 | 7–67  | 90  | 90     | 30-90  | 20 | 8  | 5              | 9; 12   | 4; 4   |
| PPB80G-B <sup>2)</sup> | 80 | 80 | 8-158 | 140 | 100    | 50-200 | 20 | 8  | 8              | 9; 12   | 4; 4   |
| PPS80G-B 2)            | 80 | 80 | 0-150 | _   | _      | 350    | 20 | 8  | -              | 9       | 4      |





C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.


<sup>2)</sup> mit zwei Muttern


|                              |        | - 0 - 0                                                                         |                         |  |  |  |
|------------------------------|--------|---------------------------------------------------------------------------------|-------------------------|--|--|--|
| Lasteinwirkungs-<br>richtung | Тур    | Charakteristische Werte der<br>Tragfähigkeit [kN] min. von<br>PPBxxG und PPS80G |                         |  |  |  |
| г                            | PPBxxG | 88,3                                                                            | 63,9 / k <sub>mod</sub> |  |  |  |
| Γ <sub>1</sub>               | PPS80G | _                                                                               | 49,5 / k <sub>mod</sub> |  |  |  |











# Stützenfüße - PPDxxG





PPDxxG Stützenfüße eignen sich für die Befestigung von Holzstützen und Pfosten in Betonfundamenten. Dabei sind sie in alle Richtungen belastbar.

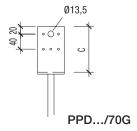
Material: Stahlsorte: S235JR gemäß EN10025.

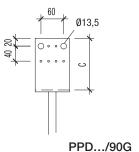
Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

Befestigung: PPDxxG Stützenfüße werden mind. 200 mm tief einbetoniert. Die Befestigung am Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben oder konstruktiv mit Bolzen.









ETA-07/0285 DoP-e07/0285

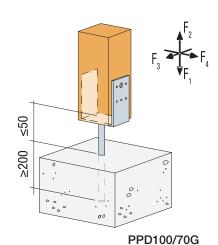
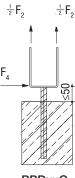

# Produktabmessungen

Tabelle 1 Art. Nr. Abmessung [mm] Löcher A 1) В С Ø G t, Anzahl PPD80/70G 80 70 126 250 16 5; 13,5 5 + 5; 1 + 1PPD90/90G 90 141 250 5; 13,5 6 + 6; 2 + 2PPD100/70G 100 70 126 250 16 5; 13,5 5 + 5; 1 + 1 5,0 PPD100/90G 100 90 136 250 5; 13,5 6 + 6; 2 + 2PPD120/90G 120 90 126 250 5; 13,5 6 + 6; 2 + 2PPD140/90G 20 5; 13,5 6 + 6; 2 + 2








# Charakteristische Werte der Tragfähigkeit

| Tabel |   | 4 |
|-------|---|---|
| Iabei | ı | 4 |

| Lasteinwirkungs-<br>richtung | Тур        | Anzahl<br>Verbindungs-<br>mittel | Charakteris<br>der Tragfäl<br>min | n C12/15<br>tische Werte<br>nigkeit [kN]<br>. von | Für Beton C20/25<br>Charakteristische Werte<br>der Tragfähigkeit [kN]<br>min. von |                         |  |
|------------------------------|------------|----------------------------------|-----------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|--|
|                              | PPD80/70G  | 10                               | -                                 | 28,0 / k <sub>mod</sub>                           | 81,9                                                                              | 40,9 / k <sub>mod</sub> |  |
|                              | PPD90/90G  | 12                               | _                                 | 36,9 / k <sub>mod</sub>                           | 78,4                                                                              | 54,5 / k <sub>mod</sub> |  |
| Г                            | PPD100/70G | 10                               | _                                 | 28,0 / k <sub>mod</sub>                           | _                                                                                 | 40,9 / k <sub>mod</sub> |  |
| F <sub>1</sub>               | PPD100/90G | 12                               |                                   |                                                   | 99,4                                                                              |                         |  |
|                              | PPD120/90G | 12                               | -                                 | 36,9 / k <sub>mod</sub>                           | _                                                                                 | 54,5 / k <sub>mod</sub> |  |
|                              | PPD140/90G | 12                               |                                   |                                                   | 102,2                                                                             |                         |  |
|                              | PPD80/70G  | 10                               | 18,4                              | 11,4 / k <sub>mod</sub>                           | 18,4                                                                              | 11,4 / k <sub>mod</sub> |  |
|                              | PPD90/90G  | 12                               | 22,0                              | 13,4 / k <sub>mod</sub>                           | 22,0                                                                              | 13,4 / k <sub>mod</sub> |  |
| F <sub>2</sub>               | PPD100/70G | 10                               | -                                 | 8,7 / k <sub>mod</sub>                            | _                                                                                 | 8,7 / k <sub>mod</sub>  |  |
| 1 2                          | PPD100/90G | 12                               | 22,0                              | 11,7 / k <sub>mod</sub>                           | 22,0                                                                              | 11,7 / k <sub>mod</sub> |  |
|                              | PPD120/90G | 12                               | -                                 | 9,4 / k <sub>mod</sub>                            | _                                                                                 | 9,4 / k <sub>mod</sub>  |  |
|                              | PPD140/90G | 12                               | -                                 | 7,8 / k <sub>mod</sub>                            | _                                                                                 | 7,8 / k <sub>mod</sub>  |  |
|                              | PPD80/70G  | 10                               |                                   | 3,7 / k <sub>mod</sub>                            |                                                                                   | 3,7 / k <sub>mod</sub>  |  |
|                              | PPD90/90G  | 12                               |                                   | 6,4 / k <sub>mod</sub>                            |                                                                                   | 6,4 / k <sub>mod</sub>  |  |
| Г                            | PPD100/70G | 10                               |                                   | 3,7 / k <sub>mod</sub>                            |                                                                                   | 3,7 / k <sub>mod</sub>  |  |
| F <sub>3</sub>               | PPD100/90G | 12                               | _                                 | 6,6 / k <sub>mod</sub>                            | _                                                                                 | 6,6 / k <sub>mod</sub>  |  |
|                              | PPD120/90G | 12                               |                                   | 7,2 / k <sub>mod</sub>                            |                                                                                   | 7,2 / k <sub>mod</sub>  |  |
|                              | PPD140/90G | 12                               |                                   | 7,2 / k <sub>mod</sub>                            |                                                                                   | 7,2 / k <sub>mod</sub>  |  |
|                              | PPD80/70G  | 10                               | 10,9                              | 5,8 / k <sub>mod</sub>                            | 10,9                                                                              | 5,8 / k <sub>mod</sub>  |  |
|                              | PPD90/90G  | 12                               | 18,7                              | 11,4 / k <sub>mod</sub>                           | 18,7                                                                              | 11,4 / k <sub>mod</sub> |  |
| F <sub>4</sub>               | PPD100/70G | 10                               | -                                 | 5,8 / k <sub>mod</sub>                            | _                                                                                 | 5,8 / k <sub>mod</sub>  |  |
| 4                            | PPD100/90G | 12                               | 18,7                              | 11,4 / k <sub>mod</sub>                           | 18,7                                                                              | 11,4 / k <sub>mod</sub> |  |
|                              | PPD120/90G | 12                               | -                                 | 11,4 / k <sub>mod</sub>                           | -                                                                                 | 11,4 / k <sub>mod</sub> |  |
|                              | PPD140/90G | 12                               | -                                 | 11,4 / k <sub>mod</sub>                           | _                                                                                 | 11,4 / k <sub>mod</sub> |  |





**PPDxxG** 

### Kombinierte Beanspruchung

$$\textbf{Es gilt:} \; \left( \frac{F_{1,d}}{R_{1,d}} \right) + \left( \frac{F_{3/4,d}}{R_{3/4,d}} \right) \; \leq \; 1 \qquad \text{bzw.} \qquad \left( \frac{F_{2,d}}{R_{2,d}} \right)^2 + \left( \frac{F_{3/4,d}}{R_{3/4,d}} \right)^2 \; \leq \; 1$$

### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Holzstütze im Querschnitt 100x100 mm, gewählter Stützenfuß: PPD100/90G, Beton C20/25  $F_{1.d} = 34,0 \text{ kN}$ 

 $F_{4,d} = 1,2 \text{ kN}$ 

Einbau im Außenbereich, NKL 3, KLED: mittel  $\Rightarrow$   $k_{mod} = 0.65$ 

 $R_{1,d} = 99.4 \times 0.65 / 1.3 = 49.7 \text{ kN} \Rightarrow \text{nicht maßgebend}$ oder 54,5 / 0,65 x 0,65 / 1,3 = 41,9 kN

 $R_{4,d} = 18.7 \times 0.65 / 1.3 = 9.35 \text{ kN} \Rightarrow \text{nicht maßgebend}$ oder  $R_{4,d} = 11,4 / 0,65 \times 0,65 / 1,3 = 8,8 \text{ kN}$ 

Nachweis: 
$$\left(\frac{34,0}{41,9}\right) + \left(\frac{1,2}{8,8}\right) = 0.95 \le 1$$

# Stützenfüße - PU





PU Stützenfüße werden direkt auf den Untergrund aufgestellt und mit Ankerbolzen oder Holzschrauben befestigt. Die 24 mm hohen Stufen im unteren Bereich halten das Holz auf Abstand.

Material: Stahlsorte: S235JR gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

Befestigung: Die PU Stützenfüße sind mit Löchern für CNA4,0xl Kammnägel, Ø8 mm Holzschrauben oder Ø10 mm Bolzen versehen. Im Boden der Stützenfüße befindet sich eine Bohrung für einen Ø16 mm Ankerbolzen.







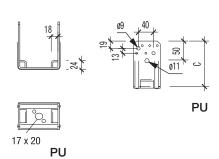
C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

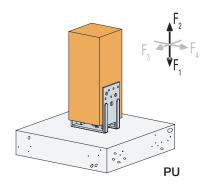


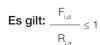
# Produktabmessungen



### Tabelle 1


Tabelle 2

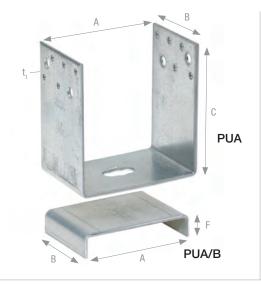

| Art. Nr. | Abmessung [mm] |    |     |    |    | Löcher   | seitlich            | Löcher im Boden |        |  |
|----------|----------------|----|-----|----|----|----------|---------------------|-----------------|--------|--|
|          | A 1)           | В  | С   | F  | t, | Ø        | Anzahl              | Ø               | Anzahl |  |
| PU70-B   | 70             | 70 | 131 | 24 | 4  | 5; 9; 11 | 5 + 5<br>2 + 2<br>1 | 17 x 20         | 1      |  |
| PU80-B   | 80             | 70 | 126 | 24 | 4  | 5; 9; 11 | 5 + 5<br>2 + 2<br>1 | 17 x 20         | 1      |  |
| PU90-B   | 90             | 70 | 131 | 24 | 4  | 5; 9; 11 | 5 + 5<br>2 + 2<br>1 | 9<br>17 x 20    | 2      |  |
| PU100-B  | 100            | 70 | 126 | 24 | 4  | 5; 9; 11 | 5 + 5<br>2 + 2<br>1 | 9<br>17 x 20    | 2      |  |
| PU120-B  | 120            | 70 | 116 | 24 | 4  | 5; 9; 11 | 5 + 5<br>2 + 2<br>1 | 9<br>17 x 20    | 2      |  |
| PU140-B  | 140            | 70 | 106 | 24 | 4  | 5; 9; 11 | 5 + 5<br>2 + 2<br>1 | 9<br>17 x 20    | 2      |  |


# Charakteristische Werte der Tragfähigkeit

| Art. Nr. | Verbindungsmittel<br>an der Stütze |                             | Charakteristische Werte der<br>Tragfähigkeit - HolzC24 [kN] |                                                          |  |  |  |
|----------|------------------------------------|-----------------------------|-------------------------------------------------------------|----------------------------------------------------------|--|--|--|
|          | Anzahl Typl                        |                             | $R_{1,k}$                                                   | $R_{2,k}$                                                |  |  |  |
| PU70-B   | n                                  | CNA4,0xℓ<br>mit<br>ℓ≥ 40 mm |                                                             | min. (n x R <sub>lat,k</sub> ; 14,1 / k <sub>mod</sub> ) |  |  |  |
| PU80-B   |                                    |                             |                                                             | min. (n x R <sub>lat,k</sub> ; 11,7 / k <sub>mod</sub> ) |  |  |  |
| PU90-B   |                                    |                             | may (10.1; n.y.D. )                                         | min. (n x R <sub>lat,k</sub> ; 10,0 / k <sub>mod</sub> ) |  |  |  |
| PU100-B  |                                    |                             | max. (19,1; n x R <sub>lat,k</sub> )                        | min. (n x R <sub>lat,k</sub> ; 8,76 / k <sub>mod</sub> ) |  |  |  |
| PU120-B  |                                    |                             |                                                             | min. (n x R <sub>lat,k</sub> ; 6,99 / k <sub>mod</sub> ) |  |  |  |
| PU140-B  |                                    |                             |                                                             | min. (n x R <sub>lat,k</sub> ; 5,82 / k <sub>mod</sub> ) |  |  |  |

R<sub>lat.k</sub> = Abscherwert der gewählten CNA Kammnägel








Die Befestigung am Beton mit Ankerbolzen M16 muss separat nachgewiesen werden.

# Stützenfüße - PUA / PUA/B





PUA Stützenfüße werden direkt auf dem Untergrund aufgestellt und mit Ankerbolzen am Untergrund befestigt. Als Abstandhalter für das Stützenende zum Boden sind Bodenplatten PUA/B in entsprechender Breite erhältlich.

Material: Stahlsorte: S250GD gemäß EN10346.

Tabelle 2

Korrosionsschutz: 275 g/m2 beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Der Anschluss am Holz erfolgt mit CNA4,0x40 Kammnägeln oder konstruktiv mit Bolzen/Schrauben Ø10 mm.



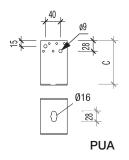




ETA-07/0285 DoP-e07/0285

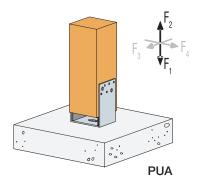
# Produktabmessungen

Tabelle 1 Löcher seitlich Art. Nr. Abmessung [mm] Löcher im Boden C 1) A 1) F В Ø Anzahl Anzahl 5 + 52 + 2PUA60-B 61 70 120 3 5; 9 13 x 28 + 16 5 + 5 2 + 2 PUA80-B 81 70 110 3 5; 9 13 x 28 + 16 1 5 + 5 2 + 2 PUA100-B 101 70 110 3 5; 9 13 x 28 + 16 5 + 5 2 + 2 PUA120-B 121 70 110 3 5; 9 13 x 28 + 16 PUA/B57-B 57 70 20 3 PUA/B77-B 77 70 20 3 PUA/B97-B 70 20 3 PUA/B117-B 117 70 20 3




C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

# Charakteristische Werte der Tragfähigkeit


|          |   |        |                             | 0 0                                                         |                        |  |  |  |
|----------|---|--------|-----------------------------|-------------------------------------------------------------|------------------------|--|--|--|
| Art. Nr. |   |        | ngsmittel<br>Stütze         | Charakteristische Werte der<br>Tragfähigkeit - HolzC24 [kN] |                        |  |  |  |
|          |   | Anzahl | Тур                         | R <sub>1,k</sub>                                            | $R_{2,k}$              |  |  |  |
| PUA60-E  | 3 | 10     | CNA4,0xℓ<br>mit<br>ℓ≥ 40 mm |                                                             | 7,6 / k <sub>mod</sub> |  |  |  |
| PUA80-E  | 3 |        |                             | min. von:                                                   | 5,2 / k <sub>mod</sub> |  |  |  |
| PUA100-I | В |        |                             | (29,6; 34,7 / k <sub>mod</sub> )                            | 4,0 / k <sub>mod</sub> |  |  |  |
| PUA120-I | В |        |                             |                                                             | 3,2 / k <sub>mod</sub> |  |  |  |

Die angegebenen Tragwerte R, k gelten in Kombination mit dem passenden Abstandhalter PUA/B.





PUA/B



Es gilt: 
$$\frac{F_{i,d}}{R_{i,d}} \le 1$$

Die Befestigung am Beton mit Ankerbolzen M16 muss separat nachgewiesen werden.

# Stützenfüße – PVDBxxG / PVDxxG / PVIG / PVIBG





PVDBxxG / PVDxxG Stützenfüße sind in der Breite verstellbar, sowie auch nach der Montage höhenverstellbar. Sie passen für alle Stützenbreiten zwischen 80-120 mm, bzw. 120-160 mm. PVIG und PVIBG Stützenfüße sind vor der Montage höhenverstellbar und werden über ein Schlitzblech und Stabdübel mit dem Holz verbunden.

Material: Stahlsorte: S235JR gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundum feuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.

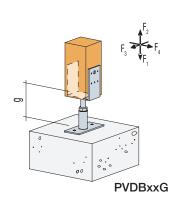
Befestigung: PVDxxG und PVIG Stützenfüße werden mind. 150 mm tief einbetoniert. Das Einlassen der Kopfplatte im Hirnholz der Stütze wird empfohlen. PVDBxxG und PVIBG werden mit 10 mm Ankerbolzen am Fundament befestigt. Die Befestigung des Holzes erfolgt je nach Ausführung mit CNA Kammnägeln bzw. CSA Schrauben oder Ø8 mm Stabdübeln.

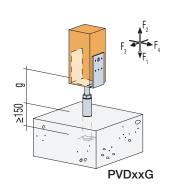


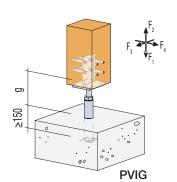


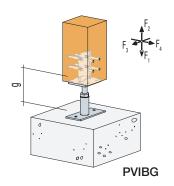


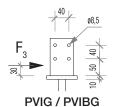


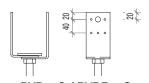

ETA-07/0285 DoP-e07/0285


### Produktabmessungen

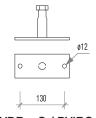

Tabelle 1


| Art. Nr.   |         | Abmessung [mm] |     |    |     |         |    |    |    |                |         | Löcher seitlich |    | Löcher im Boden |  |
|------------|---------|----------------|-----|----|-----|---------|----|----|----|----------------|---------|-----------------|----|-----------------|--|
|            | A 1)    | В              | С   | D  | E   | F       | G  | Н  | t, | t <sub>2</sub> | Ø       | Anzahl          | Ø  | Anzahl          |  |
| PVD80G     | 80–120  | 70             | 120 | 40 | 40  | 249-302 | 20 | -  | 5  | 3              | 5; 13,5 | 5+5+2           | _  | _               |  |
| PVD120G    | 120-160 | 70             | 120 | 40 | 40  | 249-302 | 20 | -  | 5  | 3              | 5; 13,5 | 5+5+2           | -  | -               |  |
| PVDB80G    | 80-120  | 70             | 120 | 70 | 160 | 136–189 | 20 | -  | 5  | 8              | 5; 13,5 | 5+5+2           | 12 | 2               |  |
| PVDB120G-B | 120-160 | 70             | 120 | 70 | 160 | 136–189 | 20 | -  | 5  | 8              | 5; 13,5 | 5+5+2           | 12 | 2               |  |
| PVIG-B     | 90      | 60             | 110 | 40 | 40  | 232–284 | 20 | 70 | 8  | 3              | 8,5     | 4               | -  | _               |  |
| PVIBG      | 90      | 60             | 110 | 70 | 160 | 119–171 | 20 | 70 | 8  | 8              | 8,5     | 4               | 12 | 2               |  |


1) PVD = Innenmaße












PVDxxG / PVDBxxG



PVDBxxG / PVIBG

# Stützenfüße - PVDBxxG / PVDxxG / PVIG / PVIBG



### Charakteristische Werte der Tragfähigkeit

Tabelle 2

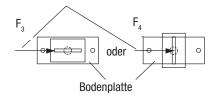
| Oi iai anteris               | SUSCITE VV         | erte der fragjarligkeit labeli |                                                      |         |                         |  |  |
|------------------------------|--------------------|--------------------------------|------------------------------------------------------|---------|-------------------------|--|--|
| Lasteinwirkungs-<br>richtung | Holzbreite<br>[mm] |                                | Charakteristische Werte<br>Tragfähigkeit [kN] min. v |         |                         |  |  |
|                              | b                  | PVE                            | )xxG                                                 | PVDBxxG |                         |  |  |
| F <sub>1</sub>               | -                  | 77,8                           | 49,0 / k <sub>mod</sub>                              | 77,8    | 49,0 / k <sub>mod</sub> |  |  |
|                              | 80                 | 17,6                           | _                                                    | 17,6    | _                       |  |  |
| $F_{_{2}}$                   | 120                | 17,6                           | 11,6 / k <sub>mod</sub>                              | 17,6    | 11,6 / k <sub>mod</sub> |  |  |
|                              | 160                | 15,2                           | 7,6 / k <sub>mod</sub>                               | 15,2    | 7,6 / k <sub>mod</sub>  |  |  |
|                              | -                  | bei                            | g =                                                  | bei     | g =                     |  |  |
|                              |                    | 48 mm                          | 2,7 / k <sub>mod</sub>                               | 136 mm  | 1,4 / k <sub>mod</sub>  |  |  |
| $F_3$                        | min. 80            | 73 mm                          | 2,1 / k <sub>mod</sub>                               | 161 mm  | 1,2 / k <sub>mod</sub>  |  |  |
|                              |                    | 98 mm                          | 1,7 / k <sub>mod</sub>                               | 186 mm  | 1,1 / k <sub>mod</sub>  |  |  |
|                              |                    | 48 mm                          | 6,5 / k <sub>mod</sub>                               | 136 mm  | 3,2 / k <sub>mod</sub>  |  |  |
| $F_4$                        | min. 80            | 73 mm                          | 3,9 / k <sub>mod</sub>                               | 161 mm  | 2,7 / k <sub>mod</sub>  |  |  |
|                              |                    | 98 mm                          | 2,8 / k <sub>mod</sub>                               | 186 mm  | 2,3 / k <sub>mod</sub>  |  |  |
|                              |                    | P\                             | /IG                                                  | PV      | IBG                     |  |  |
| F <sub>1</sub>               | -                  | 90,7                           | 49,0 / v                                             | 90,7    | 49,0 / k <sub>mod</sub> |  |  |
|                              | 80                 | 16,0                           | -                                                    | 16,0    | _                       |  |  |
| $F_2$                        | 120                | 20,7                           | _                                                    | 20,7    | _                       |  |  |
|                              | 160                | 20,7                           | _                                                    | 20,7    | _                       |  |  |
|                              | -                  | bei g =                        | 57 mm                                                | bei g = | 145 mm                  |  |  |
| $F_3$                        | -                  | _                              | 2,7 / k <sub>mod</sub>                               | _       | 2,6 / k <sub>mod</sub>  |  |  |
|                              | 80                 | 2,5                            | 2,2 / k <sub>mod</sub>                               | 1,9     | 1,9 / k <sub>mod</sub>  |  |  |
| $F_{_{4}}$                   | 120                | 3,8                            | 3,8 / k <sub>mod</sub>                               | 3,3     | 2,7 / k <sub>mod</sub>  |  |  |
|                              | 160                | 5,7                            | 4,7 / k <sub>mod</sub>                               | 3,5     | 2,7 / k <sub>mod</sub>  |  |  |

# Umrechnungsfaktoren

Tabelle 3

| g statt 57 | Faktor | g statt 145 | Faktor |
|------------|--------|-------------|--------|
| 32         | 1,15   | 120         | 1,1    |
| 82         | 0,85   | 170         | 0,85   |

Umrechnungsfaktoren bei abweichendem Maß g . Diese gelten für  ${\sf F_{3/4}}$  bei PVIG und PVIBG


### Anwendungshinweis:

PVDBxxG und PVIBG Stützenfüße mit Bodenplatte dürfen horizontale Lasten ( $F_{3/4}$ ) ausschließlich über die Längsrichtung der Bodenplatte aufnehmen.

Das bedeutet: je nach Stellung des Kopfteils sind die Stützenfüße entweder in Kraftrichtung  $\rm F_3$  oder  $\rm F_4$  belastbar.

### Die Kraftrichtungen sind wie folgt definiert:

### Kraftrichtung am Kopfteil

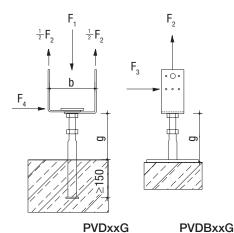


### Kombinierte Beanspruchung

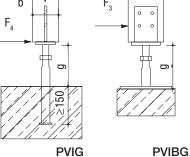
Es gilt: 
$$\left(\frac{F_{1,d}}{R_{1,d}}\right) + \left(\frac{F_{3/4,d}}{R_{3/4,d}}\right) \le 1$$
 bzw.  $\left(\frac{F_{2,d}}{R_{2,d}}\right)^2 + \left(\frac{F_{3/4,d}}{R_{3/4,d}}\right)^2 \le 1$ 

### Beispiel:

Holzstütze im Querschnitt 120x120 mm, gewählter Stützenfuß: PVIG, g = 32 mm (Korrekturfaktor gem. Tabelle 3 für  $R_{\rm 4,d}$  = 1,15)


$$F_{1,d} = 22,0 \text{ kN}$$
  
 $F_{4,d} = 0,8 \text{ kN}$ 

Einbau im Außenbereich, NKL 3, KLED: kurz  $\Rightarrow$   $k_{mod} = 0.7$ 


 $R_{1,d} = 90.7 \times 0.7 \ / \ 1.3 = 48.8 \ kN \Rightarrow nicht maßgebend$  oder  $49.0 \ / \ 0.7 \times 0.7 \ / \ 1.3 = 37.7 \ kN$ 

$$R_{_{4,d}} = 3.8 \times 0.7 \ / \ 1.3 = 2.4 \ kN$$
 oder  $R_{_{4,d}} = 3.8 \ / \ 0.7 \times 0.7 \ / \ 1.3 \times 1.15 = 3.4 \Rightarrow$  nicht maßgebend

Nachweis: 
$$\left(\frac{22,0}{37,7}\right) + \left(\frac{0,8}{2,4}\right) = 0,95 \le 1$$

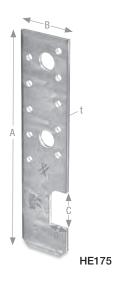


# $F_1$ $F_2$ $F_3$ $F_3$








# **HE- und Profilanker, Anschlussprofile**

| rofilanker – HE               | 246 |
|-------------------------------|-----|
| rofilanker – PROFA            | 247 |
| Maueranschlussschienen – C2KS | 249 |

HE- und Profilanker, Anschlussprofile

# Profilanker - **HE**





HE-Anker wurden zum Anschluss von Holz an Stahl-T-Profile entwickelt und eignen sich zur Aufnahme von Zugkräften. Zur zentrischen Lasteinleitung wird eine Montage mit zwei diagonal gegenüberliegenden oder vier HE-Ankern empfohlen. Die Länge kann gemäß ETA bis 315 mm hergestellt werden.

Material: Stahlsorte: S250GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Die Befestigung am Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben oder M12 Bolzen.













Einige Typen Diverse

# Produktabmessungen

| Art. Nr. |     | Abr | Löc | her |     |         |         |
|----------|-----|-----|-----|-----|-----|---------|---------|
|          | Α   | В   | С   | D   | t   | Ø       | Anzahl  |
| HE135    | 135 | 40  | 30  | 15  | 4,0 | 5       | 6       |
| HE175    | 175 | 40  | 30  | 15  | 4,0 | 5<br>13 | 10<br>2 |

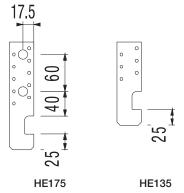
HE-Anker können gem. ETA in 20 mm Schritten bis 315 mm Länge hergestellt werden.

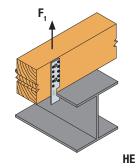
# Charakteristische Werte der Tragfähigkeit

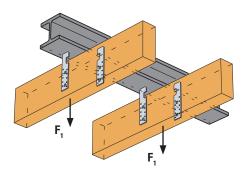
| 4 |
|---|
|   |

Tabelle 1

| 2 Verbinder je Anschluss         | Charakteristische Werte R <sub>1,k</sub><br>der Tragfähigkeit [kN] min. von |                                                                                                              |  |
|----------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| Anzahl CNA4,0x40 je<br>Verbinder |                                                                             |                                                                                                              |  |
| 3                                | 10,7                                                                        |                                                                                                              |  |
| 4                                | 13,6                                                                        | 170/16                                                                                                       |  |
| 5                                | 15,7                                                                        |                                                                                                              |  |
| 6                                | 16,8                                                                        |                                                                                                              |  |
| 7                                | 21,8                                                                        | 17,0 / k <sub>mod</sub>                                                                                      |  |
| 8                                | 23,6                                                                        |                                                                                                              |  |
| 9                                | 28,6                                                                        |                                                                                                              |  |
| 10                               | 30,7                                                                        |                                                                                                              |  |
|                                  | Anzahl CNA4,0x40 je<br>Verbinder  3 4 5 6 7 8 9                             | Anzahl CNA4,0x40 je   Verbinder   3   10,7   4   13,6   5   15,7   6   16,8   7   21,8   8   23,6   9   28,6 |  |

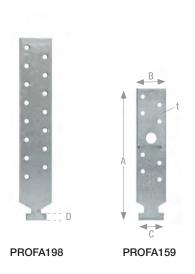

Bei Verwendung von vier HE-Ankern, dürfen die Werte der Tabelle 2 verdoppelt werden.


# Beispiel:


Holzbalken an Stahlträger, 2 Stück HE175 mit je 8 CNA4,0x40  $F_{1,d}$  = 9,8 kN

Einbau im Innenbereich, NKL1, KLED: kurz  $\Rightarrow$   $k_{mod} = 0.9$  $R_{1d} = 23.6 \times 0.9 / 1.3 = 16.3 \text{ kN} \Rightarrow \text{nicht maßgebend}$ oder  $17.0 / 0.9 \times 0.9 / 1.3 = 13.1 \text{ kN}$ 

**Nachweis:**  $\frac{9.8}{13.1} = 0.75 \le 1$ 








# Profilanker - PROFA





PROFA Profilanker wurden für die Verbindung von Holz an Ankerschienen entwickelt und eignen sich zur Aufnahme von Zugkräften. Zur zentrischen Lasteinleitung wird eine gegenüberliegende Montage mit 2 PROFA empfohlen.

Material: Stahlsorte: S250GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.





Größen



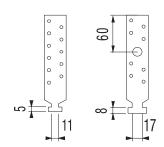


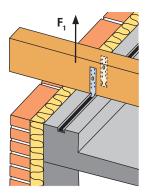




Produktabmessungen

Tabelle 1


| Art. Nr. | Abmessung [mm] |                 |    |      |   | Löcher | Anzahl | Passend für<br>Ankerschiene |      |
|----------|----------------|-----------------|----|------|---|--------|--------|-----------------------------|------|
|          | Α              | A <sup>1)</sup> | В  | С    | D | t      | Ø      |                             |      |
| PROFA108 | 108            | _               | 35 | 22,5 | 8 | 3      | 5      | 6                           | 2815 |
| PROFA158 | 158            | _               | 35 | 22,5 | 8 | 3      | 5      | 11                          | 2815 |
| PROFA198 | 198            | _               | 35 | 22,5 | 8 | 3      | 5      | 15                          | 2815 |
| PROFA159 | 159            | bis 359         | 35 | 30,0 | 9 | 4      | 5 ; 13 | 8; 1                        | 3817 |


<sup>1)</sup> als Sonderanfertigung in 20 mm Schritten möglich (Bolzenlöcher bitte extra angeben).

### Charakteristische Werte der Tragfähigkeit Tabelle 2

| Art. Nr. | Charakteristische Werte der Tragfähigkeit [kN]<br>und Anzahl der Nägel [n] je Verbinder<br>2 Verbinder je Anschluss |                                                                 |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
|          | [n] CNA4,0x40                                                                                                       | R <sub>1,k</sub> 1)                                             |  |  |  |  |
| PROFA108 |                                                                                                                     |                                                                 |  |  |  |  |
| PROFA158 | min. 6<br>> 6                                                                                                       | min (21,4; 12,6 / k <sub>mod</sub> )<br>12,6 / k <sub>mod</sub> |  |  |  |  |
| PROFA198 | , , , , , , , , , , , , , , , , , , ,                                                                               | 12,0 / Kmod                                                     |  |  |  |  |
| PROFA159 | 8                                                                                                                   | min (28,6 ; 18,8 k <sub>mod</sub> )                             |  |  |  |  |

<sup>1)</sup> Die Tragfähigkeit der Ankerschienen ist gesondert nachzuweisen.



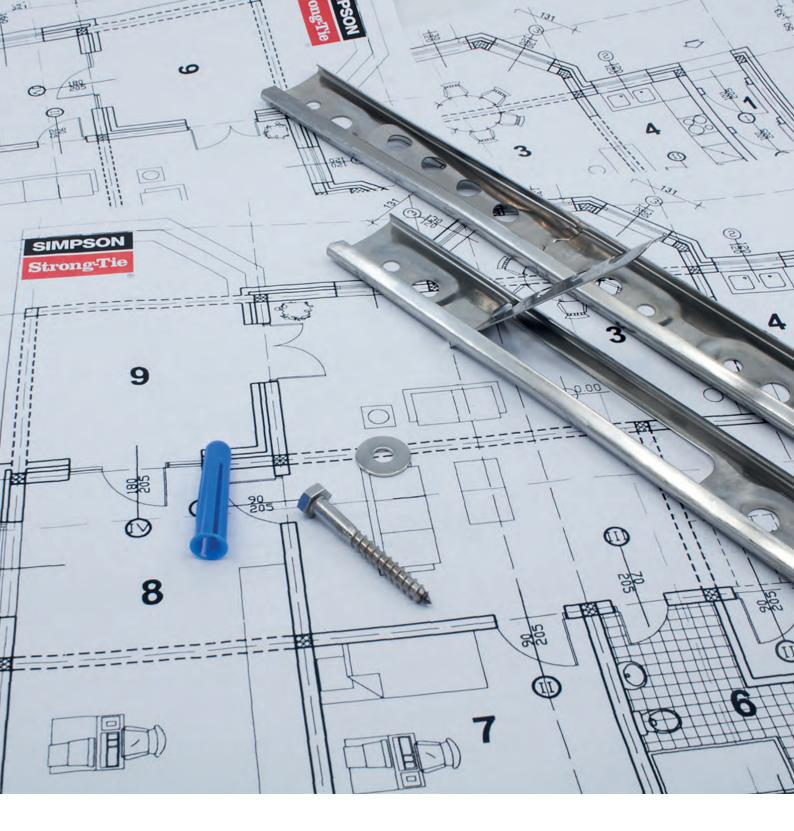


### Beispiel:

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Dachbalken 12/24 auf Ringanker, Anschluss mit 2 Stück PROFA198 an Ankerschiene

Anschluss am Holz mit 2 x 6 Stück CNA4,0x40 Kammnägeln


NKL: 2, KLED:  $kurz \Rightarrow k_{mod} = 0.9$ 

 $F_{1,d} = 8,2 \text{ kN}$ 

 $R_{1,d} = 21.4 \times 0.9 / 1.3 = 14.81 \text{ kN} \Rightarrow \text{nicht maßgebend}$ 

oder  $12,6 / 0,9 \times 0,9 / 1,3 = 9,7 \text{ kN}$ 

**Nachweis:**  $(8,2 / 9,7) = 0,85 < 1 \Rightarrow OK$ 

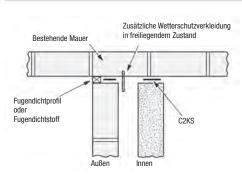


Einfach in der Handhabung Vielseitig in der Anwendung Das ist die C2KS Maueranschlussschiene



# Maueranschlussschienen - C2KS






C2KS Maueranschlussschienen sind ein Verbindungssystem, das mit den meisten gängigen Block- und Steinformaten bei Um- und Neubauarbeiten verwendet werden kann. Sie werden zur Verbindung neuer Mauerwerkswände an Bestandskonstruktionen eingesetzt.

Material: Nichtrostender Stahl.

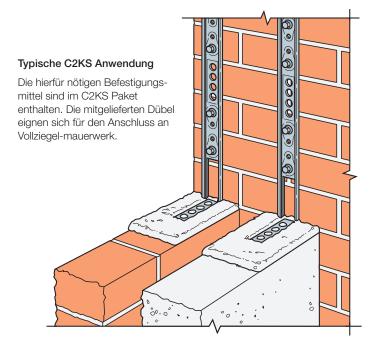
Anwendung: Das C2KS Profil kann bei Mauerwerksdicken ab 60 mm verwendet werden.





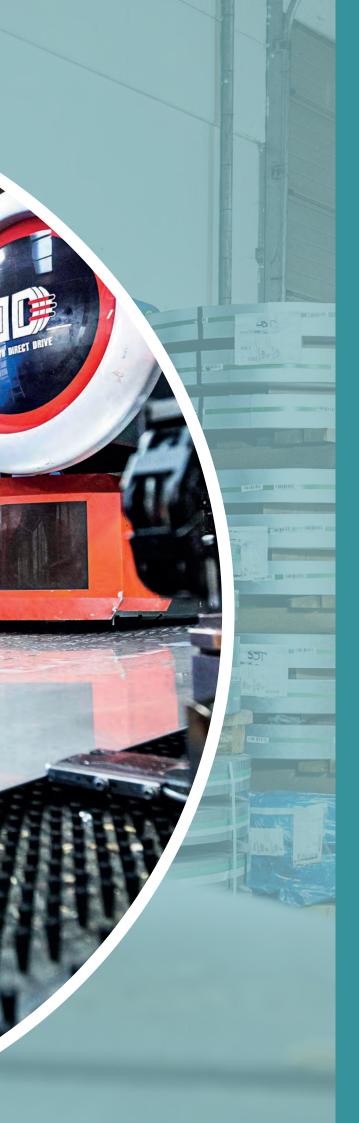
### Produktabmessungen

Tabelle 1


| Art. Nr. | Anzahl der Befestigungen | Breite der<br>Lagerfugenlaschen (mm) | Gesamtlänge (mm)<br>2240 = 2 x 1120 | Dicke der neuen Wand (mm) > 60 1) | Schubfestigkeit 2) |
|----------|--------------------------|--------------------------------------|-------------------------------------|-----------------------------------|--------------------|
| C2KS     | 6                        | 20                                   | 2240                                | 60-250                            | 3,5 kN             |

1) Bei größeren Wanddicken wird die Verwendung von 2 Schienen empfohlen

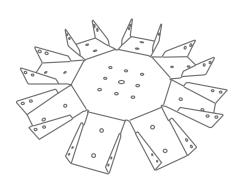
### Verarbeitung:


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

- C2KS wird in den Tiefsicken angeschraubt/angedübelt.
- Die beiliegenden Dübel dürfen nur in Vollziegel eingebaut werden. Bei anderem Mauerwerk sind entsprechend zugelassene Dübel zu verwenden.
- Die integrierten Lagerfugenlaschen werden unmittelbar vor dem Verlegen des Mauersteines herausgebogen bis diese sich vom Profil lösen. Nach dem Setzen des Steines kann die Lasche in den Führungsnuten der Schiene verschoben und auf den Stein aufgelegt
- Die Lagerfugenlaschen sollten in mindestens 4 mm dicken Mörtel eingebettet werden.
- Die Position der Lagerfugenlasche auf der Schiene ist



<sup>&</sup>lt;sup>2)</sup> Empfohlener Bemessungswert für VMz Steinfestigkeit 28

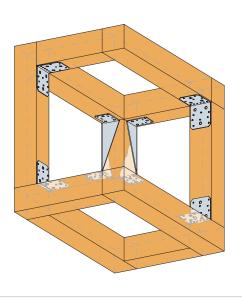







# Sonderteile






Wir fertigen Ihre Sonderteile! Profitieren Sie von einem professionellen Support-Service zur Erreichung Ihrer Ziele.



## Individuelle Produkte - Sonderteile





Neben Standard-Sonderanfertigungen, wie beispielsweise BSD Balkenschuhe in speziellen Größen oder Lochblechwinkel in besonderen Abmessungen, fertigen wir auch individuelle Bauteile nach den Wünschen unserer Kunden. Dabei versuchen wir zunächst eine Lösung aus unserer zur Verfügung stehenden Palette von Produkten, ggf. mit einer Modifizierung vorhandener Verbinder, zu finden. Lässt sich das nicht realisieren, erfolgt die Lösung mit einer Sonderanfertigung. Unser Fokus ist hierbei, eine technisch richtige und wirtschaftliche Lösung zu finden.













Einige Typen Diverse

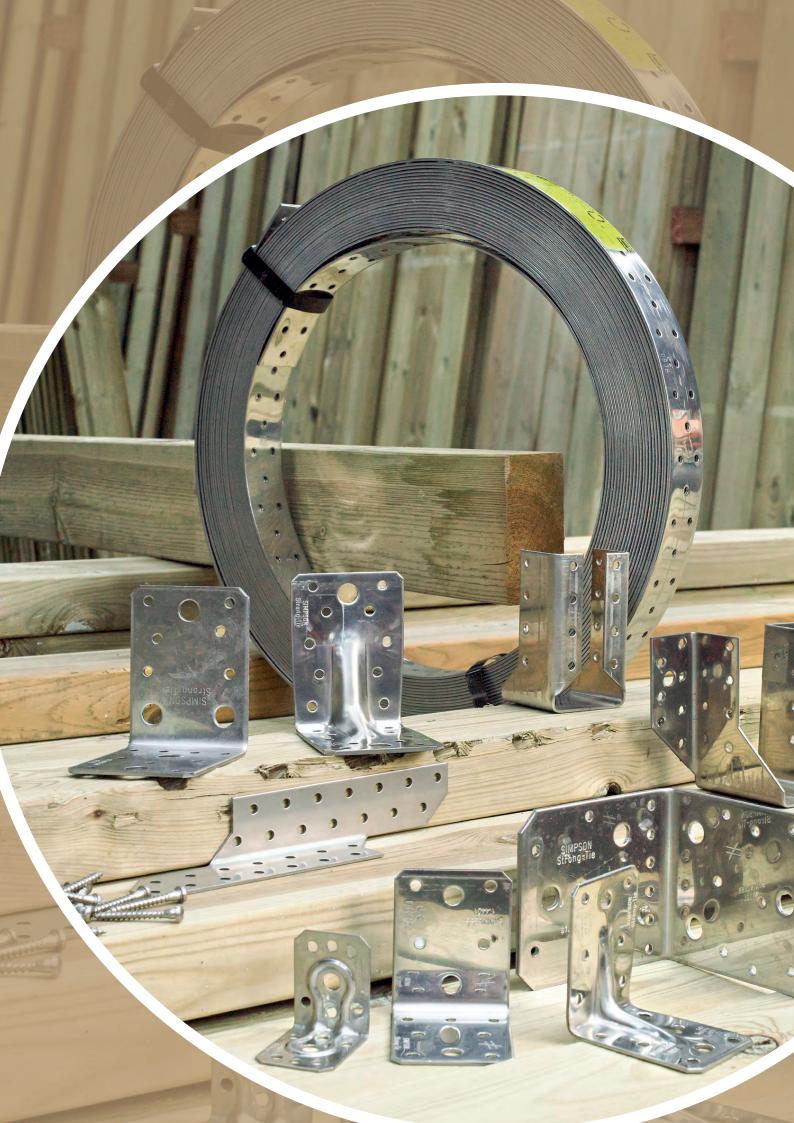


Wir fertigen sowohl Sonderteile aus unverzinkten und verzinkten Stählen, als auch Bauteile aus verschiedenen nichtrostenden Stählen, die für die erforderlichen Korrosionswiderstandklassen (CRC) I bis V geeignet sind.

Um ein Angebot erstellen zu können, werden eine Skizze oder Zeichnung, sehr gern als CAD Datei, mit allen nötigen Angaben zum Material, zum Korrosionsschutz, den Abmessungen, sowie der Anzahl von Löchern und deren Durchmessern benötigt.

Bei wirtschaftlichen Stückzahlen und regelmäßigem Bedarf ist eine Aufnahme von individuellen Sonderteilen in eine entsprechende ETA und eine daraus folgende CE Kennzeichnung möglich.

Für die Umsetzung individueller Projekte erreichen Sie unser professionelles technisches Team telefonisch unter +49 (0) 6032 8680 122, und per E-Mail unter anwendungstechnik@strongtie.com.


















| Edelstahl Rostfrei – Allgemeines                | 256 |
|-------------------------------------------------|-----|
| HCR – Hochkorrosionsbeständige Produkte         | 257 |
| Winkelverbinder – ABxxS                         | 258 |
| Winkelverbinder – ABRxxS                        | 259 |
| Winkelverbinder – ABxxS / ACxxS / ABBxxs        | 260 |
| Winkelverbinder – AKRxxS / ANPxxS               | 261 |
| Winkelverbinder – EBR                           | 262 |
| Balkenschuhe – BSDxxS / BSDlxxS                 | 263 |
| Sparrenpfettenanker – SPF                       | 263 |
| Balkenträger – BTNxxS / BT4xxS / BTxxS / BTCxxS | 264 |
| Balkenträger im Außenbereich                    |     |
| Lochband, Windrispenband – BANW / BAN           | 266 |
| Lochbleche – NPxxS                              | 267 |
| Gerberverbinder – GERWxxS                       | 267 |
| Bulldog® Scheibendübel rostfrei – C1xxS / C2xxS | 268 |
| Kammnägel – CNAxxS                              | 269 |
| Verbinderschrauben – CSAxxS                     | 269 |
| Stabdübel – STDxxS / STDPxxS                    | 269 |
|                                                 |     |

# Edelstahl Rostfrei – Allgemeines



Die nachfolgend aufgeführten Holzverbinder sind Standardartikel in rostfreier Ausführung. Unsere Holzverbinder werden aus den Werkstoffen 1.4401 (AISI316) oder 1.4404 (AISI316L) hergestellt. Die rostfreien Standardholzverbinder können in Konstruktionen mit besonderen Anforderungen an die Korrosionsbeständigkeit eingesetzt werden. Die von uns am meisten verwendeten Edelstahlsorten sind der Korrosionswiderstandsklasse III gemäß EN 1993-1-4(A1) zugeordnet.

Die statischen Werte der Standardartikel haben auch für die rostfreien Verbinder Gültigkeit. Für die Befestigung von rostfreien Holzverbindern müssen rostfreie Kammnägel, Schrauben oder Bolzen verwendet werden, um Kontaktkorrosion zu vermeiden.

Die statischen Werte für rostfreie Artikel können den entsprechenden Kapiteln für Produkte in verzinkter Ausführung entnommen werden.



## Rostfreie Stahlsorten

## HCR (High Corrosion Resistant = hochkorrosionsbeständig):

Diese Stahlsorte mit der Werkstoffnummer 1.4529 entspricht der Korrosionswiderstandsklasse V. Sie ist für Bauteile mit starker chemischer oder sehr hoher Salz- und Chloridbelastung (Schwimmbäder) erforderlich. HCR Bauteile werden auf Bestellung angefertigt. Gilt für Artikelnummern mit "HCR" am Ende.



### A4 (rostfrei & säurebeständig)

Diese Stahlsorte entspricht der Korrosionswiderstandsklasse III. Sie findet Verwendung in sämtlichen Innen- und Außenbereichen mit einer mittleren Korrosionsbelastung.

Gilt für Artikelnummern mit "S" am Ende.



## A2 (rostfrei)

Diese Stahlsorte entspricht der Korrosionswiderstandsklasse II. Sie wird für Innen- und Außenbauteile mit mäßiger Korrosionsbelastung durch die Umgebung empfohlen.
Gilt für Artikelnummern mit "S2" am Ende.



Bei Simpson Strong-Tie® erhalten Sie eine Auswahl an HCR-Verbindern und Verbindungsmitteln (HCR = High Corrosion Resistant = hochkorrosionsbeständig). Der hierfür verwendete nichtrostende Stahl 1.4529 ist bis zur Korrosivitätskategorie C5 einsetzbar.

Gemäß der Tabelle A.4: "Stahlsorten für Schwimmhallen" in der DIN EN 1993-1-4:2006+A1:2015 kommt für die meisten nichtrostende Stähle die Verwendung in Schwimmbädern, in Bereichen ohne regelmäßige Reinigung, auf Grund der Spalt- und Spannungsrisskorrosion nicht in Frage.

Lediglich drei austenitische Werkstoffe, darunter der Werkstoff mit der Nummer 1.4529, sind für tragende Bauteile in chloridhaltigen Atmosphären, bzw. für Bauteile, bei denen es ohne regelmäßige Reinigung zu Aufkonzentrationen von Chloriden kommen kann, zugelassen.

In der Regel sind die Korrosionsschutzanforderungen auf alle Gebäudeteile anzuwenden, da sich die kritischen Substanzen im gesamten Gebäude, und somit auch nach oben, verteilen. Im Schwimmbad geschieht dies durch Aerosole, in der Streusalzlagerhalle durch Staubablagerungen.

In beiden Fällen führt dies zu einer Aufkonzentration von Chloriden. Salze entziehen und binden aus der Umgebungsluft Feuchtigkeit. Gelangen Chloride in trockener Form (als Staub) in die Konstruktion, bewirkt diese hygroskopische Eigenschaft der Salze die Bildung einer gesättigten Salzlösung auf den Stahlteilen, die für einen korrosiven Angriff verantwortlich sein kann.

Der Werkstoff mit der Nr. 1.4529 ist daher ideal für Schwimmbäder, insbesondere Solebäder, Salzlager- und Salzumschlaghallen, Düngemittellager, Konstruktionen mit Meerwasserkontakt, Konstruktionen im Kontakt mit Spritzwasser oder Sprühnebel von Straßen, die mit Tausalz behandelt werden.

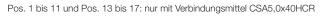
Simpson Strong-Tie® Verbinder aus diesem Werkstoff entsprechen den Anforderungen der jeweiligen ETA. Neben der Verbinderschraube CSA5,0x40HCR können Stabdübel und Passbolzen aus dem gleichen Werkstoff angeboten werden. (Bitte beachten Sie die teilweise längere Lieferzeit bei HCR Produkten).

## Ihre Vorteile

Einfache Lösungen bei problematischen Anforderungen, keine Diskussionen um den "richtigen" Werkstoff, Sicherheit bei nicht revisionierbaren Konstruktionen, keine Nachbearbeitung oder regelmäßige Wartung von Beschichtungen.

# **HCR – Hochkorrosionsbeständige Produkte**






# HCR Produkte Übersicht

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Tabelle 1

|    | Art. Nr.                               | Produktgruppe              | Abmessung<br>[mm]                         | Materialdicke<br>[mm] |
|----|----------------------------------------|----------------------------|-------------------------------------------|-----------------------|
| 1  | BSD20-xxx-HCR                          |                            | Breite > 250<br>Höhe > 320                | 2,0                   |
| 2  | BSD30-xxx-HCR                          | Balkenschuhe               | Breite > 250<br>Höhe > 320                | 3,0                   |
| 3  | BSD20-CE-xxx-HCR                       | Daikenschune               | $34 \le Breite \le 250$<br>Höhe $\le 320$ | 2,0                   |
| 4  | BSD30-CE-xxx-HCR                       |                            | $34 \le Breite \le 250$<br>Höhe $\le 320$ | 3,0                   |
| 5  | AB-xxx-HCR                             |                            | 70 / 90 / 105                             | 2,0 - 3,0             |
| 6  | ANP20-xxx-HCR                          |                            | diverse Größen                            | 2,0                   |
| 7  | ANP30-xxx-HCR                          | Winkelverbinder            | diverse Größen                            | 3,0                   |
| 8  | AKR3-xxx-HCR                           |                            | 95 / 135 / 285                            | 3,0                   |
| 9  | KNAG-xxx-HCR                           |                            | alle Standard-Größen                      | 2,0                   |
| 10 | BTN-xxx-HCR                            |                            | alle Standard-Größen                      | 2 x 3,0               |
| 11 | BT4-xxx-HCR                            | Balkenträger               | alle Standard-Größen                      | 2 x 3,0               |
| 12 | BTC-xxx-HCR                            |                            | alle Standard-Größen                      | 2 x 3,0               |
| 13 | SPF-xxx-R-HCR                          | Sparrenpfettenanker        | alle Größen                               | 2,0                   |
| 14 | SPF-xxx-L-HCR                          | Sparrenpietteriankei       | alle Größen                               | 2,0                   |
| 15 | GERW-xxx-HCR                           | Gerberverbinder            | alle Größen                               | 2,0                   |
| 16 | PROFA-xxx-HCR                          | Profilanker                | alle Größen                               | 3,0                   |
| 17 | HE-xxx-HCR                             | HE-Anker                   | alle Größen                               | 3,0                   |
| 18 | CSA5,0x40HCR                           |                            | 5,0 x 40 Schraube                         | -                     |
| 19 | STABDÜBEL                              | .,                         | diverse Größen                            | -                     |
| 20 | Gewindestange<br>Muttern<br>U-Scheiben | Verbindungsmittel          | diverse Größen                            | -                     |
| 21 | Bolzenanker                            | Verankerungen im Beton und | diverse Größen                            | -                     |
| 22 | Ankerstangen                           | Mauerwerk                  | diverse Größen                            | _                     |





# Winkelverbinder - ABxxS

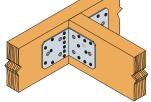


AB Winkelverbinder sind für Anschlüsse in tragenden Holzkonstruktionen geeignet, bei denen ein Anspruch an eine höhere Korrosionsbeständigkeit besteht.



# Produktabmessungen

Tabelle 1


| Art. Nr. |     | Material |    |     |     |
|----------|-----|----------|----|-----|-----|
|          | Α   | В        | С  | t   |     |
| AB70S    | 70  | 70       | 55 | 2,0 | A4  |
| AB90S    | 88  | 88       | 65 | 2,0 | A4  |
| AB105S   | 103 | 103      | 90 | 3,0 | A 4 |

Abmessungen der Bolzenlöcher sind im Kapitel Winkelverbinder aufgeführt.




AB90S





AB105S



# Winkelverbinder - ABRxxS







ABR Winkelverbinder mit Rippe sind für tragende Holzkonstruktionen geeignet, bei denen eine höhere Anforderung an die Korrosionsbeständigkeit besteht.

ABR100S Winkelverbinder sind neben Holz/Holz Anschlüssen besonders für Holz/Beton Anschlüsse geeignet.



**PATENT** 









# Produktabmessungen

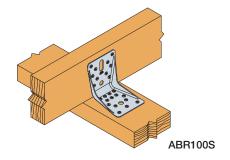
### Tabelle 1 Art. Nr. Abmessung [mm] Material C ABR10525S 105 105 90 2,5 A 4 ABR100S 100 100 2,0 Α4 90 ABR70S-B 70 70 2,0 Α4 ABR90S 90 90 65 2,5 Α4 ABR105S Α4 105 90 3,0

Abmessungen der Bolzenlöcher sind im Kapitel Winkelverbinder



ABR10525S




ABR100S



ABR70S



ABR90S





# Winkelverbinder - ABxxS / ACxxS / ABBxxs







AB / AC Winkelverbinder werden für Holz/Holz oder Holz/Beton Anschlüsse in konstruktiven Bereichen eingesetzt. Für eine gleichmäßige Lasteinleitung werden zwei Winkel je Anschluss empfohlen.





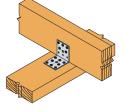

# Produktabmessungen

Tabelle 1

| Art. Nr. |    | Material |    |     |    |
|----------|----|----------|----|-----|----|
|          | Α  | В        | С  | t   |    |
| AB55365S | 65 | 65       | 55 | 2,5 | A4 |
| AC35350S | 50 | 50       | 35 | 2,0 | A4 |

Abmessungen der Bolzenlöcher sind im Kapitel Winkelverbinder aufgeführt.





AC35350S

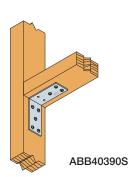
AB55365S



ABB Winkelverbinder sind für tragende Holzkonstruktionen geeignet, bei denen eine höhere Anforderung an die Korrosionsbeständigkeit besteht.










# Produktabmessungen

Tabelle 1

| Art. Nr.  |    | Material |    |     |    |
|-----------|----|----------|----|-----|----|
|           | Α  | В        | С  | t   |    |
| ABB40390S | 93 | 93       | 40 | 3,0 | A4 |



## Winkelverbinder - AKRxxS / ANPxxS





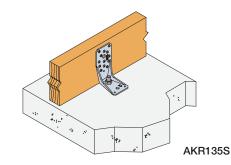


AKR Winkelverbinder sind ideal zum Anschluss von Balken und Stützen aus Holz an Beton, Stahl oder Mauerwerk. In bestimmten Fällen ist der Anschluss an Holz ebenso möglich. Alle Größen dürfen in alle Richtungen belastet werden.










# Produktabmessungen

Tabelle 1

| Art. Nr. |     | Material |    |     |    |
|----------|-----|----------|----|-----|----|
|          | Α   | В        | С  | t   |    |
| AKR95S   | 95  | 85       | 65 | 3,0 | A4 |
| AKR135S  | 135 | 85       | 65 | 3,0 | A4 |
| AKR165S  | 165 | 85       | 65 | 3,0 | A4 |
| AKR205S  | 205 | 85       | 65 | 3,0 | A4 |
| AKR245S  | 245 | 85       | 65 | 3,0 | A4 |
| AKR285S  | 285 | 85       | 65 | 3,0 | A4 |

Abmessungen der Bolzenlöcher sind im Kapitel Winkelverbinder



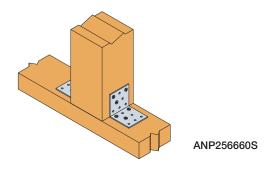


C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.



ANP Winkelverbinder sind für sich kreuzende Holz/Holz Anschlüsse geeignet.








# Produktabmessungen

Tabelle 1

| Art. Nr.   |      | Material |    |     |    |
|------------|------|----------|----|-----|----|
|            | Α    | В        | С  | t   |    |
| ANP256660S | 62,5 | 62,5     | 60 | 2,5 | A4 |



## Winkelverbinder – **EBR**





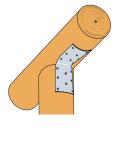


EBR Rundholzwinkel sind speziell für die Montage von Rundhölzern entwickelt worden. Durch die gekrümmte Form der Schenkel sind sie vielseitig einsetzbar. EBR60 für Rundhölzer ca. ∅80 – 100 mm.

EBR80 für Rundhölzer ca. Ø100 – 120 mm.

Tabelle 1

EBR Rundholzwinkel aus nichtrostendem Stahl werden nach Kundenanforderungen hergestellt. Weitere Information zum Thema "Sonderteile" sind im entsprechenden Kapitel zu finden.






# Produktabmessungen

| Art. Nr. |      | Abmessu | ıng [mm] |     | Material |    |
|----------|------|---------|----------|-----|----------|----|
|          | Α    | В       | С        | t   | Ø        |    |
| EBR60-R  | 56,5 | 80      | 80       | 1,5 | 5        | A4 |
| EBR80-B  | 74   | 123     | 123      | 1,5 | 5        | A4 |

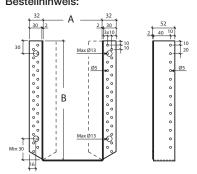




0S

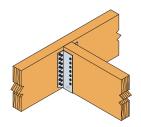
# Balkenschuhe - BSDxxS / BSDIxxS






BSD und BSDI Balkenschuhe sind für zahlreiche Hauptträger- Nebenträger, bzw. Stützen- Nebenträgerverbindungen anwendbar. Die geringe Auflagertiefe von nur 52 mm erlaubt eine verdecktliegende Montage in Installationsebenen im Holzrahmenbau. BSD mit außenliegenden Schenkeln können nach konstruktionsbedingten Vorgaben mit Bolzenlöchern zum Anschluss an Beton oder Stahl hergestellt werden.

Abmessungen und Hinweise zu diesen Produkten sind im entsprechenden Kapitel aufgeführt.




# Bestellhinweis:



Für Anfragen und Bestellungen von BSD / BSDI Balkenschuhen in nichtrostendem Stahl, Sonderabmessungen oder mit Bolzenlöchern, steht auf unserer Website ein Anfrageformular zur Verfügung:

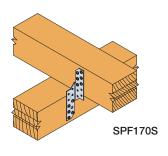
strongtie.de -> Leistungen -> Maßanfertigung



# Sparrenpfettenanker - SPF



SPF Sparrenpfettenanker werden für die Zugverankerung von sich kreuzenden Hölzern verwendet. Neben Zugkräften können horizontale Kräfte aufgenommen werden. Belastungsabhängig kommen 2 oder 4 Pfettenanker pro Anschluss zur Anwendung. Bei Verwendung von zwei Sparrenpfettenankern sollten diese zur zentrischen Lasteinleitung diagonal gegenüberliegend angeordnet werden.




## Produktabmessungen

Tabelle 1

| Art. Nr.               | Abı | Material |     |    |
|------------------------|-----|----------|-----|----|
|                        | Α   | В        | t   |    |
| SPF170LS 1)            | 170 | 32,5     | 2,0 | A4 |
| SPF170RS <sup>1)</sup> | 170 | 32,5     | 2,0 | A4 |
| SPF210LS               | 210 | 32,5     | 2,0 | A4 |
| SPF210RS               | 210 | 32,5     | 2,0 | A4 |





# Balkenträger – BTNxxS / BT4xxS / BTCxxS





Balkenträger sind sehr vielseitige und leistungsfähige Verbinder von Nebenträgern an Stützen oder Hauptträger aus Holz, Beton oder Stahl. Die Belastung kann in alle Lastrichtungen erfolgen. Sie werden im Nebenträger eingeschlitzt und mit Stabdübeln aus nichtrostendem Stahl mit ihnen verbunden. Durch die Montage sind sie daher sehr gut für Sichtholz-Konstruktionen, auch mit Brandschutzanforderungen, geeignet.

Alle Größen der Produktreihen BTN, BT4, BT und BTC sind in nichtrostendem Stahl lieferbar.

Abmessungen und Hinweise zu diesen Produkten sind im entsprechenden Kapitel aufgeführt.







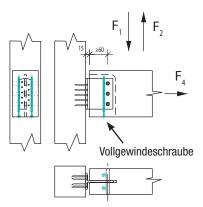


ETA-07/0285 DoP-e07/0285

## Balkenträger im Außenbereich

Balkon- und Terrassenanlagen sind in der Regel der freien Witterung (Sonne, Regen, Schnee und Wind) ausgesetzt. Diese Bauteile sind daher der Nutzungsklasse (NKL) 3 zuzuordnen. Die begehbaren Flächen von Balkonen können mit Belägen mit einer darunterliegenden Abdichtung ausgeführt werden. Abdichtungen sorgen für einen gewissen Schutz, daher dürfen einzelne darunterliegende Verbindungen der NKL 2 zugeordnet werden.

Balkonkonstruktionen werden auch ohne Abdichtung (= unter den Belagsbrettern sind keine weiteren Dichtungsebenen) hergestellt. In diesen Fällen sind alle Bauteile der Nutzungsklasse 3 zuzuordnen. Unter solchen wasserdurchlässigen Belägen muss der Detailausbildung besondere Aufmerksamkeit geschenkt werden um Staunässe und dauerhafte Durchfeuchtung der Hölzer zu vermeiden. Verdeckte Verbinder die in der NKL 3 zum Einsatz kommen, müssen hierfür einen Verwendungsnachweis haben. Balkenträger von Simpson Strong-Tie® aus Aluminium oder Edelstahl erfüllen mit den dazugehörenden Verbindungsmitteln aus Edelstahl diese Anforderungen.


Die übliche Ausführung von Balkenträgeranschlüssen ist im Außenbereich unter dem Gesichtspunkt des konstruktiven Holzschutzes nicht zielführend. Daher hat Simpson Strong-Tie® eine Anschlussvariante entwickelt, die einen verbesserten konstruktiven Holzschutz bietet und in die ETA implementiert. Nach dieser Variante können Nebenträger mit den Balkenträgern von Simpson Strong-Tie®, gemäß ETA-07/0245 mit 15 mm Abstand zum Hauptträger oder zur Stütze, eingebaut werden. Das verschafft dem Holz die Möglichkeit nach Feuchteeinwirkung durch den Luftzutritt schnell wieder zu trocknen. Die Balkenträgerhöhe ist für diese Fälle auf maximal 240 mm begrenzt.

Der Abstand der Stabdübel zum Hirnholz wird durch die Fuge zum Hauptträger von etwa 80 mm auf 60–65 mm vermindert. Um ein Vorholzversagen an den Nebenträgern vor den Stabdübeln zu vermeiden müssen Vollgewindeschrauben ≥ 6 mm beidseits des Schlitzes von unten nach oben ca. 15 mm vor der Stabdübelgruppe in das Holz eingedreht werden.

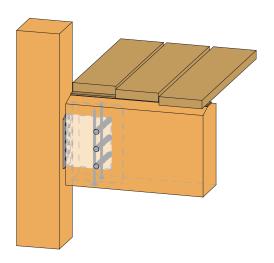
Hierbei sind die Mindestabstände der Schrauben zum seitlichen Rand und zum Hirnholz gemäß den Herstellerangaben zu beachten. Der kleinste Abstand der Vollgewindeschraubenachse zum Hirnholz darf den fünffachen Schraubendurchmesser nicht unterschreiten, eine Kollision der Schrauben mit den Stabdübeln ist unbedingt zu vermeiden.



Balkonanlage mit offenem Belag in Nutzungsklasse 3



Werden die Nebenträger mit Abstand zum Hauptträger montiert, dürfen die Balkenträger in Lastrichtung  $F_1$ ,  $F_2$  und  $F_4$  beansprucht werden. Für die Lastrichtung  $F_3$  (rechtwinklig zur Einschubrichtung) darf die Fuge bis zur Nagelplatte des Balkenträgers maximal 3 mm betragen.


# Balkenträger im Außenbereich



Damit sich ggf. im Schlitz eingedrungene Nässe nicht staut, ist es ratsam den Schlitz für den Steg des Balkenträgers unten durchgängig herzustellen und nicht zu verschließen. Auf der Oberseite sollte er geschlossen bleiben.

Des Weiteren wird empfohlen die Oberseiten der Traghölzer mit mindestens 17° abzugraten. Für den Belag reicht in der Regel eine Auflagerfläche von 30 mm aus. Ein Nageldichtband in der Auflagerfuge schützt die Oberseite der Traghölzer und die Fugen ebenfalls vor Wassereintritt.

Balkenträger aus Aluminium sollten nur in Bauwerken eingesetzt werden, die keinen erhöhten Anspruch an die Korrosionsbeständigkeit fordern. Für Konstruktionen mit einem



Eine Montage mit Abstand lässt das Wasser ablaufen und sorgt für Umspülung der Holzflächen mit Luft.

## Produktabmessungen

| То | امما | ١. |  |
|----|------|----|--|
| ıα | bel  | ıе |  |

| Art. Nr. |     | Abmessu | Anzahl de | er Löcher |       |                 |
|----------|-----|---------|-----------|-----------|-------|-----------------|
|          | A   | В       | С         | t         | Ø5 mm | Ø13 mm          |
| BTN120S  | 120 | 103     | 46        | 3         | 10    | 3               |
| BTN160S  | 160 | 103     | 46        | 3         | 14    | 4               |
| BTN200S  | 200 | 103     | 46        | 3         | 18    | 5               |
| BTN240S  | 240 | 103     | 46        | 3         | 22    | 6               |
| BT4-120S | 120 | 103     | 62        | 3         | 20    | 3               |
| BT4-160S | 160 | 103     | 62        | 3         | 28    | 4               |
| BT4-200S | 200 | 103     | 62        | 3         | 36    | 5               |
| BT4-240S | 240 | 103     | 62        | 3         | 44    | 6               |
| BTALU120 | 120 | 103     | 62        | 6         | 20    | 3 <sup>1)</sup> |
| BTALU160 | 160 | 103     | 62        | 6         | 28    | 4 1)            |
| BTALU200 | 200 | 103     | 62        | 6         | 36    | 5 <sup>1)</sup> |
| BTALU240 | 240 | 103     | 62        | 6         | 44    | 6 <sup>1)</sup> |

<sup>1)</sup> Die Stabdübellöcher der Typen BTALU werden bauseits gebohrt.

gesteigerten Anspruch, die z.B. einer temporären Belastung durch Tausalz ausgesetzt sind oder in der Nähe der Küste errichtet werden, ist eine Ausführung in Edelstahl unumgänglich.

Die Typen BTCxxS, für Anschlüsse an Beton oder Mauerwerk, sind ebenfalls aus rostfreiem Stahl hergestellt. Diese Balkenträger weisen bauartbedingt bereits eine Abstandsmontage auf.

Es ist notwendig, die Verbindungsmittel wie Kammnägel, Schrauben, Bolzen oder Stabdübel ebenfalls in rostfreier Ausführung zu wählen. Das gilt auch für die Balkenträger BTALU.

Die charakteristischen Werte der Tragfähigkeit für rostfreie Balkenträger und BTALU können den Tabellen der entsprechenden Standardbalkenträger entnommen werden.



## Ungeschütze Balkonkonstruktion mit Kapillarfugen

Nach kurzer Bewitterungszeit sind bereits braune Wasserspuren erkennbar. Fäulnis und Rost werden die Folge sein.

## Material:

BTALU: AIMgSi 0,7 DIN 1749-1

BTNxxS und BT4xxS :1.4401 oder 1.4404

CNAxxS Kammnägel / CSAxxS Schrauben : 1.4401

STDxxS Stabdübel: 1.4571 oder 1.4401 Betonverankerung (bei BTCxxS): 1.4401

## Nutzungsklasse:

NKL 3 gemäß EC5

# Lochband, Windrispenband - BANW / BAN





BANW Lochbänder werden zur Verankerung von Holzbauteilen im niederen Lastbereich und für konstruktive Anschlüsse verwendet.





# Produktabmessungen

Tabelle 1

| Art. Nr.    | AI | omessung [mi |     | Material |    |
|-------------|----|--------------|-----|----------|----|
|             | Α  | В            | t   | Ø        |    |
| BANW071203S | 12 | 3 m          | 0,7 | 5        | A4 |



BAN Windrispenband wird in Aussteifungsverbänden von Dach-, Deckenund Wandkonstruktionen als Zugstab eingesetzt und darf in tragenden Konstruktionen verwendet werden.







EN 14545 DE-DoP-h10/0001

# Produktabmessungen

Tabelle 1

| Art. Nr.   | At | Material |     |    |
|------------|----|----------|-----|----|
|            | Α  | В        | t   |    |
| BAN204025S | 40 | 25 m     | 2,0 | A4 |



FPIX Lochband wird zur Verankerung von Holzbauteilen im niederen Lastbereich und für konstruktive Anschlüsse verwendet.







EN 14545 DE-DoP-h10/0001

## Produktabmessungen

Tabelle 1

|               |                | 1000110 1 |     |          |  |
|---------------|----------------|-----------|-----|----------|--|
| Art. Nr.      | Abmessung [mm] |           |     | Material |  |
|               | Α              | В         | t   |          |  |
| FPIX20/0,8/10 | 20             | 10 m      | 0,8 | A2       |  |

## Lochbleche - NPxxS

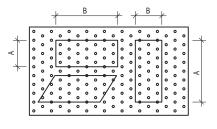






NP20/60/140S

NP Lochbleche und Lochblechstreifen werden aus nichtrostenden Stahlblechen in den Dicken 1,5 / 2,0 / 2,5 / 3,0 mm hergestellt. Der Lochdurchmesser beträgt 5 mm.


Sie sind in allen Standardgrößen von NP15/40/120 bis NP30/620/1240 lieferbar. Bei Bedarf fertigen wir Lochbleche in vielen Sondergrößen und Formen nach Ihren Vorgaben. Für eine korrekte Preisanfrage sind vermaßte Skizzen bzw. Zeichnungen notwendig.


Abmessungen und Hinweise zu diesen Produkten sind im entsprechenden Kapitel aufgeführt.











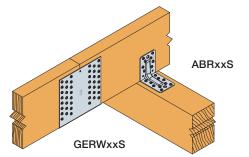
## Gerberverbinder – GERWxxS





GERW140S

GERW Gerberverbinder wurden für die Gelenkausbildung von stumpf gestoßenen Durchlaufträgern entwickelt. Neben Querkräften in vertikaler und horizontaler Richtung können sie Kräfte in Stabrichtung aufnehmen und eignen sich daher zur Weiterleitung von Verbandskräften. In Abhängigkeit von der Belastung kann zwischen Teil- und Vollausnagelung gewählt werden.


Sie sind in allen Standardgrößen von GERW90 bis GERW420 lieferbar.

Abmessungen und Hinweise zu diesen Produkten sind im entsprechenden Kapitel aufgeführt.









# Bulldog® Scheibendübel rostfrei – C1xxS / C2xxS







C1xxS

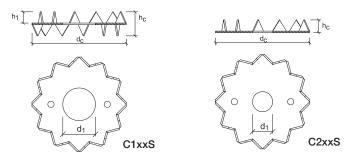
Bulldog®-Dübel werden als ein- oder zweiseitige Scheibendübel mit Zähnen hergestellt. Zweiseitige Bulldog®-Dübel werden ausschließlich für Holz an Holz-Anschlüsse eingesetzt, während die einseitigen Bulldog®-Dübel auch für Verbindungen mit Stahlblechen oder an Beton verwendet werden. Bulldog®-Dübel in Anlehnung an der EN 912 "Dübel besonderer Bauart".

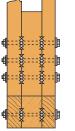
Verbindungsmittel: Bei einseitigen Scheibendübeln ist der Innendurchmesser passend zu den Bolzen M10-M24 zu wählen, ein Kontakt zwischen Dübel und Bolzen ist erforderlich. Bei zweiseitigen Scheibendübeln muss kein Kontakt zwischen Dübel und Bolzen bestehen.

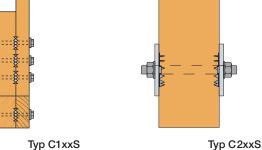
## Bitte beachten:

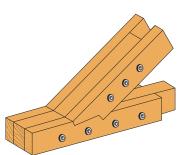
Bulldog®-Dübel in nichtrostender Ausführung sind keine Lagerware und werden nach Bedarf produziert.







## Produktabmessungen

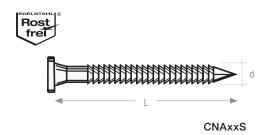

## Tabelle 1


|                         |                | -              |                | Tabelle        |
|-------------------------|----------------|----------------|----------------|----------------|
| Art. Nr.                | Abmessung [mm] |                |                |                |
|                         | d <sub>1</sub> | d <sub>c</sub> | h <sub>c</sub> | h <sub>1</sub> |
| C1-50S                  | 17             | 50             | 13,0           | 6,0            |
| C1-62S                  | 21             | 62             | 16,0           | 7,4            |
| C1-75S                  | 26             | 75             | 19,5           | 9,1            |
| C1-95S                  | 33             | 95             | 24,0           | 11,3           |
| C1-117S                 | 48             | 117            | 30,0           | 14,3           |
| C2-50M10S <sup>1)</sup> | M10            |                |                | -              |
| C2-50M12S1)             | M12            | 50             | 0.0            |                |
| C2-50M16S1)             | M16            | 50             | 6,6            |                |
| C2-50M20S 1)            | M20            |                |                | _              |
| C2-62M12S 1)            | M12            |                |                | -              |
| C2-62M16S <sup>1)</sup> | M16            | 62             | 8,7            | _              |
| C2-62M20S 1)            | M20            |                |                |                |
| C2-75M12S1)             | M12            |                |                | -              |
| C2-75M16S1)             | M16            |                |                | _              |
| C2-75M20S <sup>1)</sup> | M20            | 75             | 10,4           | _              |
| C2-75M22S 1)            | M22            |                |                | _              |
| C2-75M24S <sup>1)</sup> | M24            |                |                | -              |
| C2-95M16S1)             | M16            |                |                | -              |
| C2-95M20S 1)            | M20            | 95             | 10.7           | _              |
| C2-95M22S 1)            | M22            | 95             | 12,7           | _              |
| C2-95M24S 1)            | M24            |                |                | _              |
| C2-117M16S 1)           | M16            |                |                | -              |
| C2-117M20S 1)           | M20            | 117            | 16,0           | _              |
| C2-117M22S 1)           | M22            |                |                | _              |
|                         |                |                |                |                |

<sup>1)</sup> Einseitige Scheibendübel des Typs C2 können zur Zeit nur ohne Lochleibungsverstärkung am Bolzenloch produziert werden. Der einseitige Scheibendübel ist daher mit verminderten Tragfähigkeiten anzusetzen und erhält keine CE Kennzeichnung.









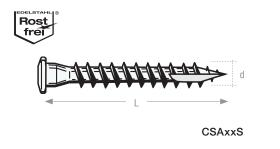

Typ C1xxS

# Kammnägel – CNAxxS





CNA Kammnägel wurden speziell für die Befestigung von Simpson Strong-Tie® Holzverbindern entwickelt. Der konische Ansatz des Schaftes unter dem Nagelkopf gewährleistet bei Stahlblech-Holz-Nagelverbindungen eine exakte Kraftübertragung. Die Werte der Tragfähigkeit sind in der ETA bzw. EN geregelt. Sie eignen sich für alle Blechfomteile mit 5 mm Bohrungen.




## Produktabmessungen

| Produktabm | Tabelle 1 |          |    |
|------------|-----------|----------|----|
| Art. Nr.   | Abmessı   | Material |    |
|            | d         | L        |    |
| CNA4,0x40S | 4,0       | 40       | A4 |
| CNA4,0x50S | 4,0       | 50       | A4 |
| CNA4,0x60S | 4,0       | 60       | A4 |



## Verbinderschrauben – CSAxxS



CSA Schrauben wurden speziell für Stahlblech-Holz-Verbindungen entwickelt. Der passgenaue Ansatz des Schaftes unter dem Schraubenkopf gewährleistet eine exakte Kraftübertragung. Die Werte der Tragfähigkeit sind in der ETA geregelt. Für die Randabstände sowie die Abstände untereinander gelten die gleichen Werte wie für die CNA4,0xl Kammnägel.



## Produktabmessungen

| Art. Nr.     | Abmessung [mm] |    | Material |
|--------------|----------------|----|----------|
|              | d              | L  |          |
| CSA5,0x35S   | 5,0            | 35 | A4       |
| CSA5,0x40S   | 5,0            | 40 | A4       |
| CSA5,0x40HCR | 5,0            | 40 | HCR      |

Tabelle 1



# Stabdübel – STDxxS / STDPxxS



STD Stabdübel werden für Anschlüsse von eingeschlitzten Stahlteilen im Holz (z.B. Balkenträger, Stützenfüße) oder für Holz-Holz Anschlüsse verwendet. Lieferbar in diversen Durchmessern und Längen.

STDP Passbolzen sind Stabdübel mit zusätzlichem Gewinde an den Enden zur Sicherung außenliegender Stahl- oder Holzlaschen. Durch die Unterlegscheiben und Muttern wird eine Klemmwirkung erzielt. Die Bohrungen im Holz müssen wie bei den Stabdübeln den Nenndurchmessern entsprechen.

Abmessungen und weitere Hinweise zu diesen Produkten sind im entsprechenden Kapitel aufgeführt.





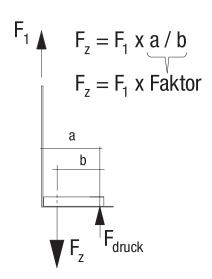
269

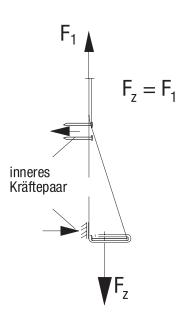






# Zuganker


| Allgemeines           | 272     |
|-----------------------|---------|
| LTŤ                   | 273     |
| AH                    | 274-275 |
| BETA                  | 276-277 |
| HD                    | 278-279 |
| HD2P                  | 280-282 |
| SCMF35/B und SCMF55/B | 284-285 |
| HTT                   | 286-289 |


# Zuganker - Allgemeines



Zuganker werden vorwiegend zur Aufnahme von Zuglasten im Holztafelbau verwendet und sind damit ein wesentlicher Bestandteil des statischen Aussteifungssystems. Dabei können Anschlüsse sowohl von Holz an Beton oder von Holz an Holzkonstruktionen erforderlich sein. Bei Holz an Holzanschlüssen sind bei einigen Zugankertypen Vollgewindeschrauben zur Querdruckverstärkung unter den Druckzonen der waagerechten Bauteile notwendig (siehe ETA-07/0285).

Zuganker sollten idealerweise direkt und ohne Zwischenschichten auf der tragenden Konstruktion verankert werden.
Andernfalls muss die Zwischenschicht bei der Berechnung der Zugankerbefestigung berücksichtigt werden. Bei der Auswahl der Zuganker muss darauf geachtet werden, dass einerseits zum Anschluss der erforderlichen Verbindungsmittelanzahl genügend Anschlussfläche unter Berücksichtigung der Randabstände zur Verfügung steht und andererseits die vom Zuganker aufzunehmenden Lasten über entsprechende Ankerbolzen in den Untergrund abgetragen werden können.





Die anzuschließende Kraft F, und die Reaktionskraft im Ankerbolzen  $F_z$  liegen nicht in einer Wirkungslinie, daher treten als innere Schnittgrößen Zentriermomente auf, die jedoch in der Regel für die Bemessung des Anschlusses nicht berücksichtigt werden müssen. Diese Zentriermomente bewirken bei einigen Zugankern, dass die Kraft im Ankerbolzen größer ist als die anzuschließende Kraft im Stiel. Die entsprechenden Faktoren sind in den statischen Tabellen aufgeführt. Wenn die größtmögliche Verankerungskraft im Beton ausgenutzt werden soll, eignen sich die Zuganker am besten, für die  $F_z = F_z$  gilt.

# Zuganker - LTT



LTT Zuganker sind Stahlblechformteile für den Holzrahmenbau zur Übertragung von Zugkräften.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke

Befestigung: Die Befestigung am Holzständer erfolgt mit CNA4,0xl Kammnägeln. Der Anschluss zum Fundament oder der Bodenplatte wird mit Ankerbolzen ausgeführt.







Produktabmessungen

505

Tabelle 1 Art. Nr. Abmessung [mm] Löcher В C Ø Anzahl 4,7 21,0 10

51

2,7

# Charakteristische Werte der Tragfähigkeit

75

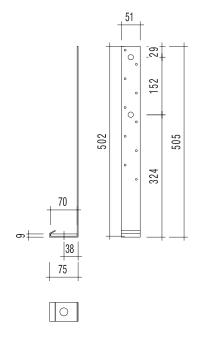
Tabelle 2

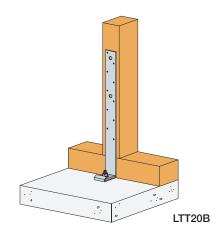
| CNA Kammnägel | LTT20B <sup>(1)</sup> Charakteristische<br>Werte R <sub>1,k</sub> der Tragfähigkeit [kN] | Bolzenfaktor |
|---------------|------------------------------------------------------------------------------------------|--------------|
| CNA 4,0xℓ     | min von:<br>n x R <sub>lat,k</sub><br>2,85 / k <sub>mod</sub>                            | 1,5          |

<sup>1)</sup> LTT20B können aufgrund der Lochdurchmesser nur mit CNA4,0xl befestigt werden.

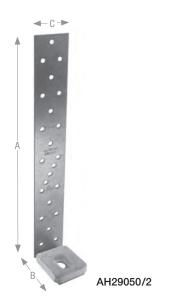
# Beispiel:

LTT20B


Zuganschluss Holzstütze an Beton mit 2 LTT20B


Einbau im Innenbereich, NKL 2, KLED: kurz  $\Rightarrow$   $k_{mod} = 0.9$ Anschluss am Holz mit 2 x 2 CNA4,0x40 Kammnägeln

 $R_{1.d} = 2 \times (2 \times 1,83 \times 0,9 / 1,3) = 5,07 \text{ kN}$ oder 2 x 2,85 / 0,9 x 0,9 / 1,3 = **4,38 kN**  $\Rightarrow$  maßgebend


**Nachweis:** 
$$\left(\frac{4,1}{4,38}\right) = 0.94 < 1.0 \Rightarrow OK$$

Erforderliche Bolzentragfähigkeit  $F_{bold ax,d} = F_{1,d} \times 1,5$ 









AH Zuganker werden als Zugverbindung von Holzbauteilen an Beton verwendet.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN 10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschicktdicke von ca. 20 µm.

Befestigung: Die Anbindung an die Stütze erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Am unteren Ende erfolgt der Anschluss mit einem Bolzen/Ankerbolzen M12 zusammen mit einer Unterlegscheibe US40/50/10G.





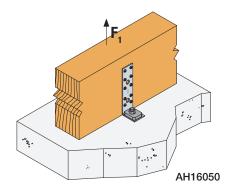


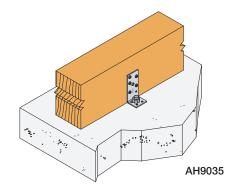
ETA-07/0285 DoP-e07/0285

## Produktabmessungen

Tabelle 1 Art. Nr. Abmessungen [mm] Löcher Bolzen-Anzahl Α В C D Ε F G loch Ø Ø5 AH9035<sup>2)</sup> 2,5 AH9055<sup>2)</sup> 2,5 AH16050 3,0 AH19050/2 2,0 AH29050/2 2,0 AH39050/2 2,0 AH49050/2 2,0 AH61050/2 2,0 AH19050/4 4,0 AH29050/4 4,0 AH39050/4 4,0 AH49050/4 4,0 AH61050/4 4,0 







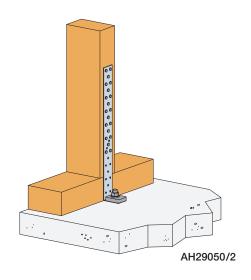



US40/50/10G-B1)





10,0


13,5 x 25

<sup>2)</sup> ETA-06/0106

# Charakteristische Werte der Tragfähigkeit

| Ta | bel | ۵۱ | - |
|----|-----|----|---|
|    |     |    |   |

| Art. Nr.  | Charakteristische Werte R <sub>1,k</sub><br>der Tragfähigkeit [kN] |                          | Bolzent                  | aktoren                   |
|-----------|--------------------------------------------------------------------|--------------------------|--------------------------|---------------------------|
|           | min.                                                               | . von                    | <b>k</b> <sub>b.ax</sub> | <b>k</b> <sub>b.lat</sub> |
| AH16050   | n x R <sub>lat,k</sub>                                             | 15,3 / k <sub>mod</sub>  | 2,33                     | 0,79                      |
| AH19050/2 | n x R <sub>lat,k</sub>                                             | 15,23 / k <sub>mod</sub> | 2,33                     | 0,79                      |
| AH29050/2 | n x R <sub>lat,k</sub>                                             | 15,23 / k <sub>mod</sub> | 2,33                     | 0,79                      |
| AH39050/2 | n x R <sub>lat,k</sub>                                             | 15,23 / k <sub>mod</sub> | 2,33                     | 0,79                      |
| AH49050/2 | n x R <sub>lat,k</sub>                                             | 15,23 / k <sub>mod</sub> | 2,33                     | 0,79                      |
| AH61050/2 | n x R <sub>lat,k</sub>                                             | 15,23 / k <sub>mod</sub> | 2,33                     | 0,79                      |
| AH19050/4 | n x R <sub>lat,k</sub>                                             | 19,77 / k <sub>mod</sub> | 2,33                     | 0,79                      |
| AH29050/4 | n x R <sub>lat,k</sub>                                             | 19,77 / k <sub>mod</sub> | 2,33                     | 0,79                      |
| AH39050/4 | n x R <sub>lat,k</sub>                                             | 19,77 / k <sub>mod</sub> | 2,33                     | 0,79                      |
| AH49050/4 | n x R <sub>lat,k</sub>                                             | 19,77 / k <sub>mod</sub> | 2,33                     | 0,79                      |
| AH61050/4 | n x R <sub>lat,k</sub>                                             | 19,77 / k <sub>mod</sub> | 2,33                     | 0,79                      |



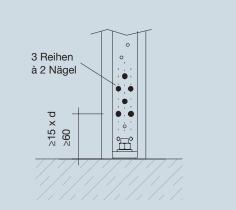
- $n = effektive Anzahl der Nägel <math>n_{ef}$  gem. EC5 (8.3.1.1)
- ax = abscheren ax = herausziehen

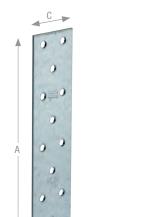
## Beispiel:

Zuganschluss einer Holzstütze an Beton mit AH39050/2

$$F_{1,d} = 7.8 \text{ kN}$$

Einbau im Innenbereich, NKL 2, KLED: kurz  $\Rightarrow$   $k_{mod} = 0.9$ mit 6 CNA4,0x50 Kammnägel,  $R_{lat,k} = 2,22 \text{ kN}$ 


3 Nagelreihen à 2 CNA Kammnägel in der Stütze:  $n_{\rm ef} = 3 \times 2^{0.85} = 5.4$  $R_{1d} = 5.4 \times 2.22 \times 0.9 / 1.3 = 8.3 \text{ kN}$ oder  $R_{1,d} = 15,23 / 0,9 \times 0,9 / 1,3 = 11,72 \text{ kN} \Rightarrow \text{nicht maßgebend}$ 


Nachweis: 
$$\left(\frac{7.8}{8.3}\right) = 0.94 < 1.0 \Rightarrow OK$$

Der Nachweis für den Ankerbolzen im Beton ist für die nachfolgenden Kräfte gesondert zu führen:

$$R_{bold ax,d} = 7.8 \times 2.33 = 18.17 \text{ kN} = N_{SD}$$

$$R_{bold \; lat,d} = 7.8 \times 0.79 = 6.16 \; kN = N_{SD}$$





BETA Zuganker werden als Zugverbindung von Holzbauteilen an Beton verwendet. Es werden 5 verschiedene Größen in je 2,0 und 4,0 mm Blechdicke produziert. Die in der Tabelle angegebene Länge entspricht der Nutzlänge inkl. des abgekanteten, kurzen Schenkels (22 mm).

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

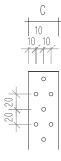
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 um.

**Befestigung:** Die Anbindung an die Stütze erfolgt mit CNA4,0x $\ell$  Kammnägeln oder CSA5,0x $\ell$  Schrauben. Der Zuganker muss mindestens 100 mm tief einbetoniert und zur vollen Verankerung um einen Bewehrungsstahl Ø10 mm geführt werden.








ETA-07/0285 DoP-e07/0285

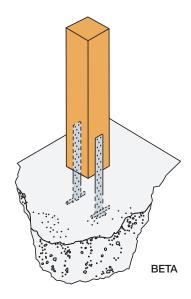
# Produktabmessungen

Tabelle 1

| Art. Nr.    | Abmessungen [mm] |    |    | Löc | her |        |
|-------------|------------------|----|----|-----|-----|--------|
|             | А                | В  | С  | t   | Ø   | Anzahl |
| BETA2/200   | 182              | 22 | 40 | 2   | 5   | 14 + 1 |
| BETA2/300   | 282              | 22 | 40 | 2   | 5   | 21 + 1 |
| BETA2/400   | 382              | 22 | 40 | 2   | 5   | 29 + 1 |
| BETA4/300   | 284              | 24 | 40 | 4   | 5   | 21 + 1 |
| BETA4/400   | 384              | 24 | 40 | 4   | 5   | 29 + 1 |
| BETA4/500-B | 484              | 24 | 40 | 4   | 5   | 36 + 1 |
| BETA4/600-B | 584              | 24 | 40 | 4   | 5   | 44 + 1 |

BETA 2/220




# Charakteristische Werte der Tragfähigkeit Tabelle 2

|             | •                                     |                                                       |
|-------------|---------------------------------------|-------------------------------------------------------|
| Betonanker  | Charakteristische Werte<br>für 1 BET/ | R <sub>1,k</sub> der Tragfähigkeit [kN]<br>A min. von |
| BETA2/200   |                                       |                                                       |
| BETA2/300   |                                       | 16,7 / k <sub>mod</sub>                               |
| BETA2/400   |                                       |                                                       |
| BETA4/300   | n x R <sub>lat,k</sub>                |                                                       |
| BETA4/400   | 00-B                                  | 22.474                                                |
| BETA4/500-B |                                       | 33,4 / k <sub>mod</sub>                               |
| BETA4/600-B |                                       |                                                       |

 $n = n_{ef}$  gemäß EC5 (8.3.1.1)

## Anwendungshinweis:

Um einen korrekten Sitz der BETA Zuganker zu gewährleisten, wird empfohlen diese vor dem Betonieren an der Holzkonstruktion anzuschließen und nachträglich zu vergießen.



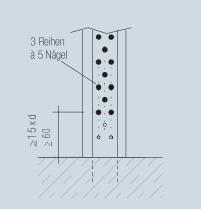
## Beispiel:

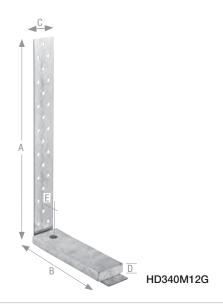
Zuganschluss Holzstütze an Beton mit BETA4/400

 $F_{1,d} = 17,7 \text{ kN}$ 

Einbau im überdachten Außenbereich, NKL 2, KLED: kurz  $\Rightarrow$   $k_{mod} = 0.9$ 

Mit 15 CNA4,0x50 Kammnägel,  $R_{lat,k} = 2,22 \text{ kN}$ 


(siehe Tabellenwerte für CNA Kammnägel)


3 Nagelreihen à 5 CNA Kammnägel:  $n_{ef} = 3 \times 5^{0.85} = 11.8$ 

 $R_{1,d} = 11.8 \times 2.22 \times 0.9 / 1.3 = 18.1 \text{ kN}$ oder 33.4 / 0.9 × 0.9 / 1.3 = 25.7  $\Rightarrow$  nicht maßgebend

**Nachweis:**  $\left(\frac{17,7}{18,1}\right) = 0.98 \le 1.0 \Rightarrow OK$ 

Der Nachweis für den Anschluss des Zugankers im Beton ist gesondert zu führen.





HD Zuganker werden zur Verbindung von Holzbauteilen an Betonunterkonstruktionen verwendet.

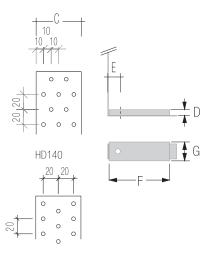
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke

Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben. Zum Anschluss an Betonbauteile sind M12, M16 oder M20 Ankerbolzen zu verwenden.







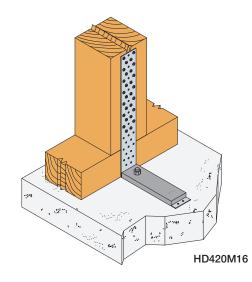


Produktabmessungen

Tabelle 1 Art. Nr. Abmessung [mm] Löcher Bolzen-Anzahl В C D Ε G loch Ø Ø5 HD140M12G 2,0 HD240M12G 1) 2,0 HD280M12G 1) 2,0 HD340M12G-B1) 2,0 HD400M16G-B 1) 3,0 HD420M16G-B<sup>2)</sup> 2,0 HD420M20G-B2) 2,0 HD480M20G-B<sup>2)</sup> 2,5 



<sup>&</sup>lt;sup>2)</sup> Das Lochbild ist gleich dem 60 mm breiten Windrispenband.





# Zuganker - HD



## Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr.    | Charakteristis<br>der Tragfäl |                         |      |
|-------------|-------------------------------|-------------------------|------|
|             | min. von                      | Faktor<br>Bolzen        |      |
| HD140M12G   | n x R <sub>lat,k</sub>        | 12,9 / k <sub>mod</sub> | 1,41 |
| HD240M12G   | n x R <sub>lat,k</sub>        | 17,7 / k <sub>mod</sub> | 1,32 |
| HD280M12G   | n x R <sub>lat,k</sub>        | 17,7 / k <sub>mod</sub> | 1,32 |
| HD340M12G-B | n x R <sub>lat,k</sub>        | 17,7 / k <sub>mod</sub> | 1,19 |
| HD400M16G-B | n x R <sub>lat,k</sub>        | 24,3 / k <sub>mod</sub> | 1,31 |
| HD420M16G-B | n x R <sub>lat,k</sub>        | 26,6 / k <sub>mod</sub> | 1,22 |
| HD420M20G-B | n x R <sub>lat,k</sub>        | 26,6 / k <sub>mod</sub> | 1,78 |
| HD480M20G-B | n x R <sub>lat,k</sub>        | 33,2 / k <sub>mod</sub> | 1,47 |

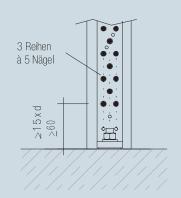
 $n = n_{ef}$  gem. EC5 (8.3.1.1)

## Anwendungshinweis:

Zur Ermittlung der Tragfähigkeit eines HD-Zugankers kann gemäß nebenstehender Tabelle die Nageloder Stahltragfähigkeit des Zugankers maßgebend werden. Beide Werte sind zu ermitteln, der kleinere Wert ist jeweils entscheidend. Des Weiteren muss stets die Tragfähigkeit der Verankerung im Untergrund nachgewiesen werden.

Werden HD Zuganker auf Holzuntergründen montiert, kann die Druckfläche unter der Unterlegscheibe gemäß ETA-07/0285 bei Bedarf mit Vollgewindeschrauben gegen Querdruck verstärkt werden.

## Beispiel:


Zuganschluss Holzstütze an Beton mit HD420M16 im Innenraum.

Vorhandene Zugkraft  $F_{1,d} = 17,4 \text{ kN}$ 

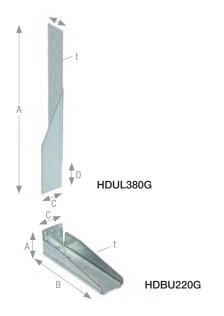
NKL 1, KLED:  $k_{mod} = 0.9$ 

Anschluss am Holz mit 15 CNA 4,0x50 Kammnägel,  $R_{\rm lat,k}=2,22$  kN (siehe Tabellenwerte für CNA Kammnägel)

Ausführung in 3 Nagelreihen à 5 CNA Kammnägel:  $n_{ef}=3 \times 5^{0.85}=11,8$  Nägel  $R_{1,d}$  Nagelanschluss = 11,8 × 2,22 × 0,9 / 1,3 = 18,1 kN oder  $R_{1,d}=25,5$  / 0,9 × 0,9 / 1,3 = 19,6  $\Rightarrow$  nicht maßgebend



## Nachweis:


## Erforderliche Bolzentragfähigkeit:

 $F_{bold ax,d} = F_{1,d} x Faktor Bolzen = 17,4 x 1,22 = 21,2 kN$ 

Der gewählte Ankerbolzen muss für eine Bemessungszugkraft von 21,2 kN nachgewiesen werden.

# Zuganker – **HD2P**





HD2P Ober- und Unterteile lassen sich vielfältig kombinieren und damit dem individuellen Bedarf für eine optimale Lösung anpassen. Durch die werkseitige Vormontage, direkt am Stiel und ohne überstehende Bauteile, können Wandtafeln als geschlossene und fertige Elemente zur Verwendungsstelle gebracht werden. Mit zwei Zugankeroberteilen und einem Mittelstück lassen sich geschossübergreifende Verbindungen von zugbelasteten Wandstielen herstellen. Die Kopplung der beiden Verbinderteile erfolgt mit dem Verbindungsstück SCMF (siehe ETA-07/0285).

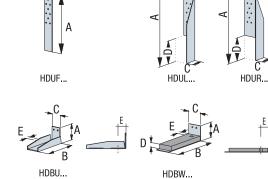
Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

Korrosionsschutz: 275 g/m2 beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

**Befestigung:** Der Anschluss an das Holz erfolgt mit CNA4,0x $\ell$  Kammnägeln oder CSA5,0xl Schrauben. Zum Anschluss an Betonbauteile werden M12 oder M16 Ankerbolzen verwendet.



# Produktabmessungen Oberteile


| Tal | bel | le |
|-----|-----|----|
|-----|-----|----|

| Art. Nr. |     | Α  |    |     |   |   |          |
|----------|-----|----|----|-----|---|---|----------|
|          | Α   | В  | С  | D   | t | Ø | Anzahl   |
| HDUF250G | 250 | -  | 40 | -   | 2 | 5 | 11       |
| HDUF400G | 400 | -  | 60 | -   | 2 | 5 | 40       |
| HDUL380G | 380 | 53 | 55 | 65  | 2 | 5 | 20       |
| HDUR380G | 380 | 53 | 55 | 65  | 2 | 5 | 20       |
| HDUL465G | 465 | 53 | 55 | 150 | 2 | 5 | 20       |
| HDUR465G | 465 | 53 | 55 | 150 | 2 | 5 | 20       |
| HDUF40XG | 1)  | _  | 40 | -   | 2 | 5 | n. Länge |
| HDUF60XG | 1)  | _  | 60 | _   | 2 | 5 | n. Länge |

<sup>1)</sup> Länge auf Kundenwunsch

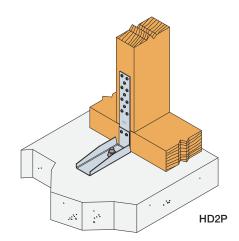


Tabelle 2



## Produktabmessungen Unterteile

| Art. Nr.                  |    | Abmessung [mm]            |    |    |     |   |      |   |  |  |
|---------------------------|----|---------------------------|----|----|-----|---|------|---|--|--|
|                           | А  | A   B   C   D   E   t   Ø |    |    |     |   |      |   |  |  |
| HDBU163G <sup>2)</sup>    | 65 | 163                       | 40 | -  | 50  | 3 | 13,0 | 2 |  |  |
| HDBU220G <sup>2) 3)</sup> | 65 | 220                       | 54 | -  | 55  | 4 | 18,0 | 3 |  |  |
| HDBU379G <sup>2) 3)</sup> | 65 | 379                       | 40 | -  | 114 | 4 | 18,0 | 2 |  |  |
| HDBW60G                   | 82 | 65                        | 50 | 15 | 27  | 2 | 12,5 | 2 |  |  |
| HDBW160G                  | 65 | 160                       | 50 | 15 | 27  | 2 | 12,5 | 3 |  |  |
| HDBW200G                  | 65 | 222                       | 60 | 20 | 37  | 2 | 16,5 | 2 |  |  |


Zu verwendende Unterlegscheiben und Verbindungsschrauben:

<sup>2)</sup> US40/50/10G-B

U-Scheibe 40x50x10 mm mit Ø13 mm U-Scheibe 50x50x8 mm mit Ø17 mm

3) US50/50/8G-B <sup>4)</sup> JT2-3-5,5x25

EJOT Schraube JT2-3-5,5 x 25 zur Verbindung eines Unterteils mit einem Oberteil



# Zuganker – **HD2P**

Die Ober- und Unterteile sind gemäß der Matrix kombinierbar.

Matrix Tabelle 3

| IVIatri    | Χ |   |                                       |                 |          |          |           |                                        |                                         |          | labelle 3  |
|------------|---|---|---------------------------------------|-----------------|----------|----------|-----------|----------------------------------------|-----------------------------------------|----------|------------|
|            |   |   |                                       |                 |          |          | Oberteile |                                        |                                         |          |            |
|            |   |   |                                       | А               | В        | С        | D         | E                                      | F                                       | G        | Н          |
| HD2P       |   |   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                 |          |          |           | [::::::::::::::::::::::::::::::::::::: | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |          |            |
|            |   |   | Name                                  | HDUF250G        | HDUF400G | HDUL380G | HDUR380G  | HDUL465G                               | HDUR465G                                | HDUF40XG | HDUF60XG   |
|            | 1 |   | HDBU163G                              | ✓               | ✓        | V        | V         | ✓                                      | √                                       | √        | ✓          |
|            | 2 |   | HDBU220G                              | -               | √¹)      | ✓        | √         | √                                      | √                                       | -        | ✓          |
| Unterteile | 3 |   | HDBU379G                              | ✓ <sup>2)</sup> | √        | ✓        | ✓         | √                                      | √                                       | √        | ✓ <u> </u> |
| Unte       | 4 | 0 | HDBW60G                               | <b>√</b>        | √        | ✓        | V         | √                                      | ✓                                       | ✓        | ✓          |
|            | 5 |   | HDBW160G                              | √               | √        | ✓        | V         | √                                      | √                                       | √        | ✓ <u> </u> |
|            | 6 |   | HDBW200G                              | -               | ✓        | V        | √         | ✓                                      | ✓                                       | -        | <b>√</b>   |

- √ Kombination möglich
- Kombination nicht möglich
- <sup>1)</sup> Als fertige Kombination: HD2P60G <sup>2)</sup> Als fertige Kombination: HD2PL40G

# Statische Werte Oberteile

Tabelle 4

| Oberteile | R <sub>1,o,k</sub>        | Anzahl<br>Ø5 mm          |    |
|-----------|---------------------------|--------------------------|----|
| HDUF250   | n v D                     | 17,8 / k <sub>mod</sub>  | 11 |
| HDUF400   | n x R <sub>lat,k</sub>    | 26,7 / k <sub>mod</sub>  | 40 |
| HDUL380   | 20 CNA: 3)                |                          | 20 |
| HDUR380   | 11,7 x R <sub>lat,k</sub> | 01.4D                    | 20 |
| HDUL465   | 14 CNA:                   | 21,4 x R <sub>ax,k</sub> | 20 |
| HDUR465   | 8,1 x R <sub>lat,k</sub>  |                          | 20 |
| HDUF40X   | n v D                     | 17,8 / k <sub>mod</sub>  | 2) |
| HDUF60X   | n x R <sub>lat,k</sub>    | 26,7 / k <sub>mod</sub>  | 2) |

 $n=n_{\mbox{\tiny ef}}$  gemäß EC5 (8.3.1.1). Die Nagelbilder gem. ETA sind zu beachten.

<sup>1)</sup> mit Kammnägeln CNA4,0x50

<sup>2)</sup> je nach Lochblechlänge <sup>3)</sup> Nagelbild im Beispiel auf der nächsten Seite

# Statische Werte Unterteile

Tabelle 5

**SIMPSON** 

Strong-Tie

| Unterteile             | R <sub>1,u,k</sub> [kN] | Anzahl<br>EJOT <sup>4)</sup> | Ankerbolzen |        |
|------------------------|-------------------------|------------------------------|-------------|--------|
|                        |                         |                              | Ø           | Faktor |
| HDBU163G               | 12,8 / k <sub>mod</sub> | 2                            | 12          | 1,55   |
| HDBU220G               | 19,2 / k <sub>mod</sub> | 3                            | 16          | 1,40   |
| HDBU379G               |                         |                              |             | 1,46   |
| HDBW60G 5)             | 12,8 / k <sub>mod</sub> | 2                            | 12          | 2,00   |
| HDBW160G 5)            |                         |                              |             | 1,24   |
| HDBW200G <sup>5)</sup> | 19,2 / k <sub>mod</sub> | 3                            | 16          | 1,23   |

<sup>4)</sup> EJOT Schrauben JT2-3-5,5x25

5) Tragfähigkeiten mit den jeweiligen U-Scheiben

## Beispiel:

Ein Stiel 60/160 mm einer Wandtafel mit einer Zugkraft von

 $F_{1,d}$  = 11,3 kN NKL1, KLED: kurz  $\Rightarrow$   $k_{mod}$  = 0,9 soll an der Betonplatte angeschlossen werden.

## Gewählt: Anschluss an den Stiel: HDUL380 mit

20 CNA4,0x50 Kammnägel  $R_{lat,k} = 2,22 \text{ kN}; R_{ax,k} = 0,98 \text{ kN}$ 

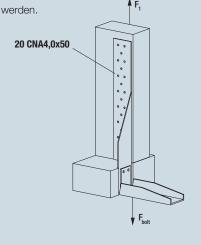
$$R_{1,o,d} = min \begin{cases} 11,7 \times \frac{2,22 \times 0,9}{1,3} \\ 21,4 \times \frac{0,98 \times 0,9}{1,3} \end{cases} = 14,5 \text{ kN}$$

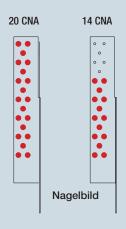
Gewählter Anschluss an die Betonplatte: HDBU220

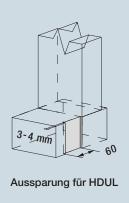
$$R_{1,u,d} = \frac{19,2}{0,9} \times \frac{0,9}{1,3} = 14,8 \text{ kN}$$

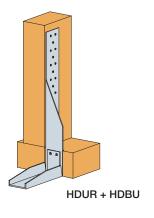
Maßgebend:  $R_{1,d} = 14,5 \text{ kN}$ 

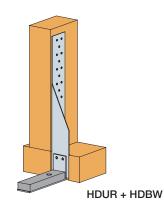
$$\frac{11,3}{14,5} = 0,78 \le 1 \Rightarrow Ok$$

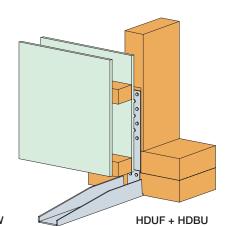

Ober- und Unterteil werden mit 3 EJOT Schrauben JT2-3-5,5x25 verbunden.


## Erforderliche Bolzentragfähigkeit:


Der Faktor für die Bolzenzugkraft beträgt 1,4.


Der Bolzen muss für folgende Kraft bemessen werden:

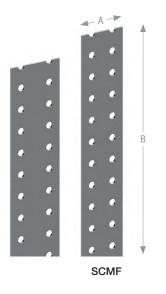

$$F_{bold \, ax,d} \ge F_{1,d} \times 1,4 = 11,3 \times 1,4 = 15,82 \text{ kN}$$














# Geschossverbinder – SCMF35/B und SCMF55/B





Die neuen SCMF Geschossverbinder von Simpson Strong-Tie® sind weitere Bausteine im System der zweiteiligen Zuganker und lassen sich aufgrund der durchgehenden Lochung schnell und flexibel an jede Geschossübergangshöhe anpassen. Ihre Wunschlänge "B", im Raster von 20 mm, wird aus 2480 mm langen Basisstreifen kurzfristig zugeschnitten und zum Versand gebracht.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN10346.

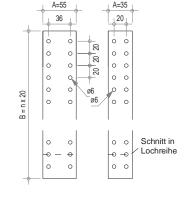
Korrosionsschutz: 275 g/m² beidseitig – entsprechend einer Zinkschichtdicke von ca. 20 µm.

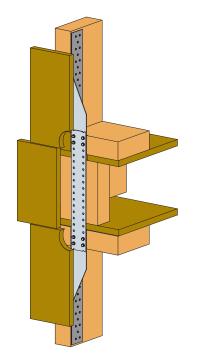
Befestigung: Die Geschossverbinder SCMF werden mit selbstbohrenden EJOT Schrauben JT2-3-5,5x25 mit den Anschlussblechen der 2 teiligen Zuganker verbunden.



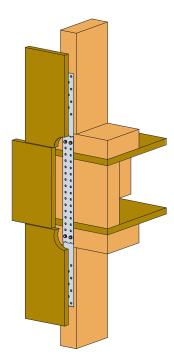








ETA-07/0285 (in Bearbeitung) DoP-e07/0285

# Produktabmessungen


| Produktabmessungen Tabelle 1 |                                |                    |     |    |    |    |  |  |  |
|------------------------------|--------------------------------|--------------------|-----|----|----|----|--|--|--|
| Art. Nr.                     | Abmessung [mm] Lochraster [mm] |                    |     |    |    |    |  |  |  |
|                              | Α                              | A B t Ø quer längs |     |    |    |    |  |  |  |
| SCMF35/B-X                   | 35                             | 1)                 | 2,0 | 6  | 20 | 20 |  |  |  |
| SCMF55/B-X                   | 55                             | 1)                 | 6   | 36 | 20 |    |  |  |  |

<sup>1)</sup> nach Kundenanforderung im 20 mm Raster





SCMF55/HDUL/R380 in der Anwendung



SCMF35/HDUF250 in der Anwendung

## Anwendungshinweise:

Ein Kappschnitt, jeweils durch die Lochreihe, garantiert einen ausreichenden Lochabstand zum Rand für die Löcher und die Schrauben.

Übereinandergreifende Bleche mit deckungsgleichen Lochbildern, dürfen mit Maschinenschrauben M6,0xl der Güte 8.8 und Muttern verbunden werden.



# Geschossverbinder – SCMF35/B und SCMF55/B



## Statische Werte

## Charakteristische Werte der Tragfähigkeit

Tabelle 2

| Art. Nr.   | Anzahl<br>EJOT Schraube | Charakteristische Werte R <sub>1,k</sub><br>der Tragfähigkeit [kN] |  |  |
|------------|-------------------------|--------------------------------------------------------------------|--|--|
| SCMF35/B-X | 2 x 2                   | 12,8 / k <sub>mod</sub>                                            |  |  |
| SCMF55/B-X | 2 X Z                   | TE, S / Mod                                                        |  |  |
| SCMF55/B-X | 2 x 4                   | 25,6 / k <sub>mod</sub>                                            |  |  |

<sup>&</sup>lt;sup>1)</sup> Die Verbindung der Geschossverbinder mit den Anschlussblechen erfolgt mit EJOT Schrauben JT2-3-5,5x25

# Kombinierte charakteristische Werte der Tragfähigkeit 1)

Tabelle 3

| Art. Nr.<br>Geschossverbinder | Anzahl<br>EJOT Schraube | Art. Nr.<br>Oberteil | Anzahl<br>Verbindungsmittel | Verbindungsmittel | Charakteristische Werte R <sub>1,k</sub> der Tragfähigkeit [kN]<br>in Kombination mit HDUxxx-Oberteilen |                                |
|-------------------------------|-------------------------|----------------------|-----------------------------|-------------------|---------------------------------------------------------------------------------------------------------|--------------------------------|
| SCMF35/B                      | 2 x 2                   | HDUF250G             | - 8                         | CNA4,0x40         | <u>min von</u>                                                                                          |                                |
| SUMF35/B                      | 2 X Z                   | HDUF40XG             | 0                           | CSA5,0x35         | 12,8 / k <sub>mod</sub> ; 14,8                                                                          |                                |
| SCMF35/B                      | 2 x 2                   | HDULxxxG             | 14                          | CNA4,0x50         | <u>min von</u>                                                                                          |                                |
| 30WII 33/B                    | 2 % 2                   | HDURxxxG             | 14                          | 14                | CSA5,0x40                                                                                               | 12,8 / K <sub>mod</sub> ; 18,0 |
| SCMF55/B                      | 2 x 4                   | HDUF400G             | 13                          | CNA4,0x50         | <u>min von</u>                                                                                          |                                |
| 30WII 33/B                    | 2 // 4                  | HDUF60XG             | 13                          | 15                | CSA5,0x40                                                                                               | 25,6 / k <sub>mod</sub> ; 28,9 |
| SCMF55/B                      | 2 x 4                   | HDULxxxG             | 20                          | CNA4,0x60         | <u>min von</u>                                                                                          |                                |
| 30WII 33/B                    | 2 // 4                  | HDURxxxG             | 20                          | GNA4,0X00         | 25,6 / k <sub>mod</sub> ; 26,3                                                                          |                                |
| SCMF35/B                      | 2 x 2                   | HDUF250G             | frei wählbar                | frei wählbar      | <u>min von</u>                                                                                          |                                |
| 30WII 33/B                    | 2 / 2                   | HDUF40XG             | irei waiibai                | irei wanibai      | 12,8 / $k_{mod}$ ; $n \times R_{lat,k}$                                                                 |                                |
| SCMF55/B                      | 2 x 4                   | HDUF400G             | frei wählbar                | frei wählbar      | <u>min von</u>                                                                                          |                                |
| 30WF33/B                      | 2 1 4                   | HDUF60XG             | irei wanibai                | irei wanibai      | $25,6 / k_{mod}$ ; $n \times R_{lat,k}$                                                                 |                                |

<sup>1)</sup> Die in der Tabelle aufgezeigten Kombinationen stellen nur einen kleinen Ausschnitt der Anschlussmöglichkeiten mit den SCMF und den Zugankeroberteilen dar.

## Bestimmung der Länge der SCMF-Geschossverbinder:

Bei 2 x 2 EJOT Schrauben: Lichter Abstand (LA) zwischen den Enden der Oberteile zzgl. 80 mm Bei  $2 \times 4$  EJOT Schrauben: Lichter Abstand (LA) zwischen den Enden der Oberteile zzgl. 120 mm. Anschließend auf den nächsten durch 20 teilbaren Wert aufrunden.

Beispiel SCMF55/B mit 4 EJOT Schrauben je Ende: LA = 245 mm

245 mm + 120 mm = 365 mm  $\rightarrow$  365 / 20 = 18,25  $\rightarrow$  19  $\times$  20 = 380 mm

Der zu bestellende Geschossverbinder muss 380 mm lang sein und hat die Bezeichnung: SCMF55/380.

<sup>2)</sup> die EJOT Schrauben müssen stets symmetrisch angeordnet werden



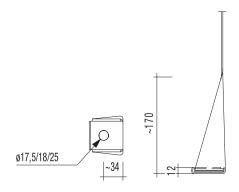
HTT Zuganker werden zur Verbindung von Holzbauteilen an eine Betonunterkonstruktion oder zur geschossweisen Weiterleitung von Zugkräften verwendet.

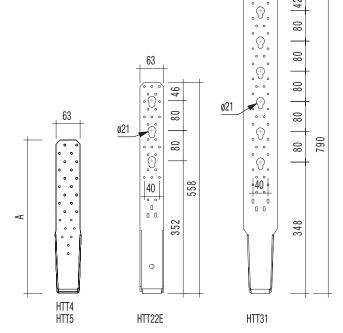
**Material:** Stahlsorte: S250GD + Z275 gemäß DIN EN10346 und beim HTT22E und HTT31 S350GD + Z275 gemäß DIN EN10346

Korrosionsschutz:  $275 \text{ g/m}^2$  beidseitig – entsprechend einer Zinkschichtdicke von ca.  $20 \text{ }\mu\text{m}$ 

**Befestigung:** Am Holzständer erfolgt die Befestigung mit CNA4,0x $\ell$  Kammnägel, CSA5,0x $\ell$  Schrauben oder Bolzen. Der Anschluss zum Fundament oder der Bodenplatte wird mit Schwerlastdübeln oder Steinschrauben ausgeführt.





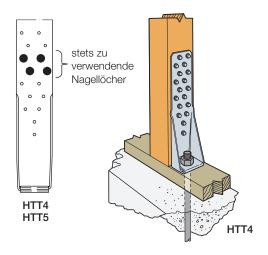

Produktabmessungen

Tabelle 1

| Art. Nr. | A   | bmessu | ıng (mm | Löc | her                   |                   |
|----------|-----|--------|---------|-----|-----------------------|-------------------|
|          | Α   | В      | С       | t   | Ø                     | Anzahl            |
| HTT4     | 314 | 62     | 64      | 2,8 | 4,7<br>17,5           | 18<br>1           |
| HTT5     | 403 | 62     | 64      | 2,8 | 4,7<br>17,5           | 26<br>1           |
| HTT22E   | 558 | 60     | 64      | 3,0 | 5<br>5x12<br>21<br>18 | 31<br>3<br>3<br>1 |
| HTT31    | 790 | 60     | 90      | 3,0 | 5<br>5x12<br>21<br>25 | 41<br>4<br>6<br>1 |






SIMPSON

# Charakteristische Werte der Tragfähigkeit

| ٦ | a | h | $\sim$ I | ٦  |  |
|---|---|---|----------|----|--|
|   | а | U | Ы        | IE |  |

| CNA<br>Kammnägel | Anzahl Nägel zur<br>Erzielung<br>der max. Tragfähigkeit<br>bei k <sub>mod</sub> = 0,9 | HTT4 und HTT5 <sup>1)</sup><br>Charakteristische<br>Werte R <sub>1,k</sub> der<br>Tragfähigkeit [kN] | Bolzenfaktor |
|------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------|
| CNA 4,0x40       | 14                                                                                    | min von:<br>(n-3,5) x 1,83<br>18,52                                                                  | 1,0          |
| CNA 4,0x50       | 15                                                                                    | min von:<br>(n-3,5) x 2,22<br>24,70                                                                  | 1,0          |
| CNA 4,0x60       | 17                                                                                    | min von:<br>(n-3,5) x 2,36<br>30,87                                                                  | 1,0          |

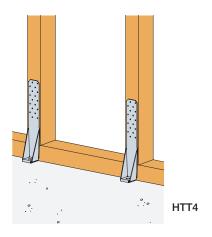




## Beispiel 1:

Zuganschluss Holzstütze an Beton mit HTT5

 $F_{1,d} = 16,2 \text{ kN}$ 

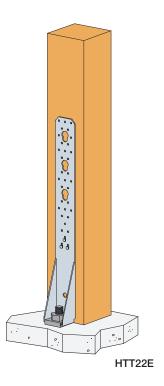

Einbau im Innenbereich, NKL 1, KLED:  $kurz \Rightarrow k_{mod} = 0.9$ 

Anschluss am Holz mit 15 CNA4,0x50 Kammnägel

 $\begin{aligned} R_{1,d} &= (15 - 3.5) \times 2,22 \times 0.9 \ / \ 1,3 = 17,67 \ kN \\ \text{oder} \ 24,7 \times 0.9 \ / \ 1,3 = \textbf{17,1 kN} \Rightarrow \text{maßgebend} \end{aligned}$ 

**Nachweis:** 
$$\left(\frac{16,2}{17,1}\right) = 0.95 < 1.0 \Rightarrow OK$$

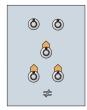
Erforderliche Bolzentragfähigkeit:  $F_{bold ax,d} \ge F_{1,d}$ 




# Zuganker - HTT

# Charakteristische Werte der Tragfähigkeit

Tabelle 3


| CNA Kammnägel<br>CSA Verbinder-<br>schrauben | Anzahl Verbindungsmittel CNA/ CSA zur Erzielung der max. Tragfähigkeit bei $k_{\text{mod}} = 0.9$ | HTT22E<br>Charakteristische Werte R <sub>1,k</sub><br>der Tragfähigkeit [kN]                                 | Bolzenfaktor |
|----------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------|
| CNA 4,0x40                                   | 26                                                                                                | min von:<br>(n-3,5) x 1,83<br>39,59                                                                          | 1,0          |
| CNA 4,0x50                                   | 23                                                                                                | min von:<br>(n-3,5) x 2,22<br>42,34                                                                          | 1,0          |
| CNA 4,0x60                                   | 27 <sup>1)</sup><br>26 <sup>2)</sup>                                                              | min von:<br>(n-3,5) x 2,36<br>53,14 <sup>1)</sup><br>47,6 / k <sub>mod</sub> <sup>2)</sup>                   | 1,0          |
| CSA 5,0x40                                   | 33 <sup>1)</sup><br>28 <sup>2)</sup>                                                              | min von:<br>$(n-3,5) \times 2,22$<br>$57,5 / k_{mod}^{-1}$<br>$47,6 / k_{mod}^{-2}$                          | 1,0          |
| CSA 5,0x50                                   | 28 <sup>1)</sup><br>24 <sup>2)</sup>                                                              | min von:<br>(n-3,5) x 2,63<br>57,5 / k <sub>mod</sub> <sup>1)</sup><br>47,6 / k <sub>mod</sub> <sup>2)</sup> | 1,0          |
| CSA 5,0x80                                   | 22 <sup>1)</sup><br>19 <sup>2)</sup>                                                              | min von:<br>$(n-3,5) \times 3,50$<br>$57,5 / k_{mod}^{-1}$<br>$47,6 / k_{mod}^{-2}$                          | 1,0          |



## Anschluss:

Am vertikalen Schenkel erfolgt der Anschluss mit CNA-Kammnägeln oder CSA-Verbinderschrauben, alternativ mit Bolzen oder ZYKLOP-Verbindern und Schrägverschraubung. Die fünf untersten Löcher sind unabhängig von den gewählten Verbindungsmitteln, d.h. auch bei Verwendung von Bolzen oder ZYKLOP-Verbindern, stets zu verwenden. Die Montage der Nägel bzw. Schrauben in den Langlöchern muss am unteren Rand erfolgen.

Am horizontalen Schenkel erfolgt der Anschluss mit Ankerbolzen  $\emptyset$ 16 mm oder mit Vollgewindeschrauben + U-Scheibe.



C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

## Beispiel 2:

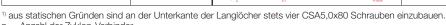
Ein Pfosten 120x120 mm aus Nadelholz C24 mit einer Zugkraft von  $F_{1.d}$  = 42,8 kN soll mit einem Zuganker an ein Stahlbetonfundament angeschlossen werden. Klasse der Lasteinwirkungsdauer, NKL 2, KLED: kurz  $\Rightarrow$   $k_{mod}$  = 0,9

## Gewählt:

HTT22E mit 33 CSA5,0x40 Schrauben von unten beginnend verschraubt R $_{\rm 1.d}$  = min (33-3,5) x 2,22 x 0,9 / 1,3 = 45,34 kN oder 57,5 / 0,9 x 0,9 /1,3 = 44,23 kN  $\Rightarrow$  maßgebend

**Nachweis:** 
$$\left(\frac{42.8}{44.23}\right) = 0.97 < 1.0 \Rightarrow OK$$

Die Verankerung (M16) im Fundament ist für eine Zugkraft von  $F_{\text{bold ax, d}} \ge 42,8 \text{ kN}$  nachzuweisen.


<sup>&</sup>lt;sup>1)</sup> Die Tabellenwerte gelten bei einer am Zuganker unten beginnenden Ausschraubung.

<sup>&</sup>lt;sup>2)</sup> Die Tabellenwerte gelten bei einer am Zuganker oben beginnenden Ausschraubung.

# Zuganker – **HTT**

#### Charakteristische Werte der Tragfähigkeit

| Verbindungsmittel                                         | Anzahl<br>Verbindungsmittel | HTT31<br>Charakteristische Werte R <sub>1,k</sub><br>der Tragfähigkeit [kN]                             | Bolzenfaktor |
|-----------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------|--------------|
| CSA5,0x80                                                 | 45                          | 85,1 / k <sub>mod</sub>                                                                                 | 1,0          |
| CNA4,0x60 + CSA5,0x80 1)                                  | 41+4                        | min<br>(96,8; 85,1 / k <sub>mod</sub> )                                                                 | 1,0          |
| ZYKT69 + CSA5,0x80 <sup>1)</sup><br>Bauteildicke > 150 mm | 6+4                         | min<br>(n <sub>z</sub> <sup>0,9</sup> x 66,9 x l <sub>ef</sub> x 0,86 / 1000; 78,3 / k <sub>mod</sub> ) | 1,0          |



 $n_z^{}=$  Anzahl der Zyklop-Verbinder  $l_{\rm ef}^{}=$  effektive Gewindelänge im tragenden Bauteil

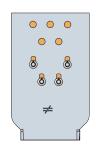


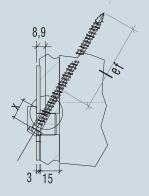

Tabelle 4

#### Beispiel 3:

Der Endstiel, 80 x 140 mm, einer Holztafelwand aus Nadelholz C24 mit einer Zugkraft von F<sub>1 d</sub> = 52,6 kN soll mit einem Zuganker HTT31 durch eine 15 mm dicke Zwischenschicht hindurch an ein Stahlbetonfundament angeschlossen werden.

Der Nachweis des Anschlusses erfolgt mit 6 Zyklop-Verbindern ZYKT69 und 4 CSA5,0x80 Schrauben gemäß Tabelle 4, dritte Anschlussvariante.

Ermittlung der wirksamen Einschraublänge  $I_{\rm ef}$  im Holz:

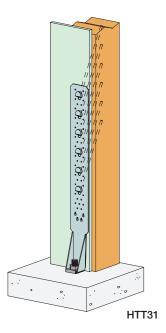

$$I_{ef} = I - X - (15 + 3 - 8.9) / sin30^{\circ} = 300 - 17 - 18 = 265$$
 mm   
  $15 = Z$ wischenschicht   
  $3 = B$ lechdicke HTT

mit

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

I = Länge der Schraube

X = 17 mm gem. ETA-07/0317




 $R_{1.d} = min (6^{0.9} \times 66.9 \times 265 \times 0.86 \times 0.9 / 1.3; 78.3 / 0.9 \times 0.9 / 1.3) = min (52.9; 60.2) = 52.9 kN$ 

(Werte für die Berechnung des ZYKT Zyklop-Verbinders siehe im entsprechenden Kapitel und/oder ETA-07/0314).

**Nachweis:** 
$$\left(\frac{52,6}{52,9}\right) = 0,99 < 1,0 \Rightarrow OK$$

Die Verankerung (M24) im Fundament ist für eine Zugkraft von  $F_{bold ax. d} \ge 52,6 \text{ kN nachzuweisen.}$ 









# **Haus und Garten**

| Design Series                                    |         |
|--------------------------------------------------|---------|
| Design Series Stilvolle und tragfähige Verbinder | 294-295 |
| Lochbänder – BANW / FBAR                         | 296     |
| Flachverbinderwinkel - FLVW                      | 297     |
| Montagewinkel – EFIXR                            | 297     |
| Flachverbinder – FLV                             | 298     |
| Winkel L und T-form – 66                         | 298     |
| Rundholzverbinder – EBR / RFC                    | 299     |
| Stuhlwinkel – EC                                 | 299     |
| Konsolwinkel – CF-R                              |         |
| Nagelplatten – MP                                | 301     |
| Pfostenanker – PPH / PPHB                        | 302     |
| Bodenhülsen – PPJET                              | 302     |
| Pfostenhalter – JGB18G                           | 303     |
| Pfostenhalter – PCN                              | 303     |
| Pfostenhalter - PCNB40G / PCNS40G                | 304     |
| Pfostenhalter - PBR24/50G / PCR24/50G            | 304     |
| Pfostenhalter – PDS60G                           | 305     |
| Pfostenhalter – PA                               | 305     |
| Pfostenhalter - PBL4540 / PBE60G                 | 306     |
| Gefalteter Stützenfuß – PPWSxxZ                  | 306     |
| Pfostenhalter – PT30G                            |         |
| Pfostenhalter – PPU / PDL                        |         |
| Pfostenhalter – PTB48G                           | 308     |
| KIT FIX Pfostenanker inkl. Zubehör               |         |
|                                                  |         |



# Verleihen Sie Ihren

# Außen- und Gartenbauwerken aus Holz Stabilität und Eleganz

#### **Modernes Wohnen im Freien**

Das Sortiment der Design Serie umfasst wesentliche und einfach zu verarbeitenden Verbinder, die für gängige Holzverbindungen, Stützenanschlüsse und Fundamente von Terrassen- und Gartenkonstruktionen benötigt werden:

- Winkel- und Flachverbinder,
- Stützenfüße,
- Pfostenhalter,
- · Balkenschuhe,
- Befestigungsmittel

Die Verbinder sorgen für Langlebigkeit, fügen sich harmonisch in die Holzkonstruktionen ein und eignen sich für eine Vielzahl von Projekten im Freien, wie z.B.:

- Pergolen,
- Zäune,
- Spaliere,
- Geräteschuppen,
- Terrassenüberdachungen,
- Aufbewahrungsbox

Bauprofis und Heimwerker können jetzt ansprechende und tragfähige Verbinder für ihre Außenkonstruktionen einsetzen.

Ihr Garten wird es Ihnen danken.



**Design Series: Modernes Wohnen im Freien** 

# **Design Series**

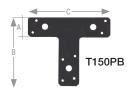




SAE250/46/2PB










Schwarz pulverbeschichtete Verbinder und Schrauben

Simpson Strong-Tie® bringt mit der Design Series seine jahrzehntelange Erfahrung im Ingenieurholzbau jetzt auch im







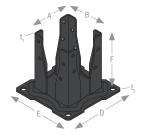
Außenbereich ein.





PP18/24BB




APB100/150PB



PPA100PB



| Produktabmessungen Tabelle 1 |     |     |     |         |           |         | Tabelle 1 |      |                |                   |                    |
|------------------------------|-----|-----|-----|---------|-----------|---------|-----------|------|----------------|-------------------|--------------------|
| Art. Nr.                     |     |     |     | Abm     | nessunger | n [mm]  |           |      |                | Löcher            |                    |
|                              | А   | В   | С   | D       | Е         | F       | G         | t,   | t <sub>2</sub> | Ø                 | Anzahl             |
| ABR100PB                     | 10  | 100 | 90  | -       | -         | -       | -         | 2,0  | -              | 5 / 12 /<br>12x32 | 10+14 /<br>1+1 / 1 |
| AG527PB                      | 91  | 91  | -   | 150     | 150       | 130     | -         | 3,0  | 4,0            | 8 / 12            | 16 / 4             |
| APB100/150PB                 | 100 | 100 | -   | 130     | 130       | 100-150 | 20        | 4,0  | 4,0            | 12                | 4+4                |
| CABOCHON70PB                 | 71  | 71  | 35  | -       | -         | -       | -         | 2,0  | -              | 4,5               | 2                  |
| CABOCHON90PB                 | 91  | 91  | 35  | -       | -         | -       | -         | 2,0  | -              | 4,5               | 2                  |
| CSA5,0x35PB-R                |     |     |     | Ø 5,0 r | nm, Läng  | e 35 mm |           |      |                | -                 | -                  |
| EA444/2PB                    | 40  | 40  | 40  | -       | -         | -       | -         | 2,0  | -              | 5                 | 3+3                |
| KIT FIX PPJNC70PB            | 71  | 71  | -   | 150     | 150       | 150     | -         | 2,5  | 2,5            | 8 / 12            | 4/4                |
| KIT FIX PPJNC90PB            | 91  | 91  | -   | 150     | 150       | 150     | -         | 2,5  | 2,5            | 8 / 12            | 4/4                |
| L150PB                       | 40  | 150 | 150 | -       | -         | -       | -         | 2,0  | -              | 5 / 8,5           | 5+5/3              |
| PP18/24BB                    | 80  | 80  | -   | 130     | 130       | 180-240 | 24        | 10,0 | 4,0            | 6,5 / 12          | 6/4                |
| PPA100PB                     | 100 | 100 | -   | 130     | 130       | 100     | 48        | 4,0  | 4,0            | 12                | 4+4                |
| PPG60/25PB                   | 60  | 200 | 55  | 25      | -         | -       | -         | 3,0  | -              | 12                | 4+1                |
| PPJBT70PB                    | 71  | 71  | -   | 150     | 150       | 150     | -         | 2,0  | 2,5            | 11 / 12           | 4/4                |
| PPJBT90PB                    | 91  | 91  | -   | 150     | 150       | 150     | -         | 2,0  | 2,5            | 11 / 12           | 4/4                |
| SAE200/46/2PB                | 60  | 77  | 84  | 42      | -         | -       | -         | 2,0  | -              | 5 / 13            | 8+5/2              |
| SAE250/46/2PB                | 60  | 102 | 84  | 42      | -         | -       | -         | 2,0  | -              | 5 / 13            | 12+7 / 2           |
| T150PB                       | 40  | 150 | 150 | -       | -         | -       | -         | 2,0  | -              | 5 / 8,5           | 4+4/3              |



AG527PB



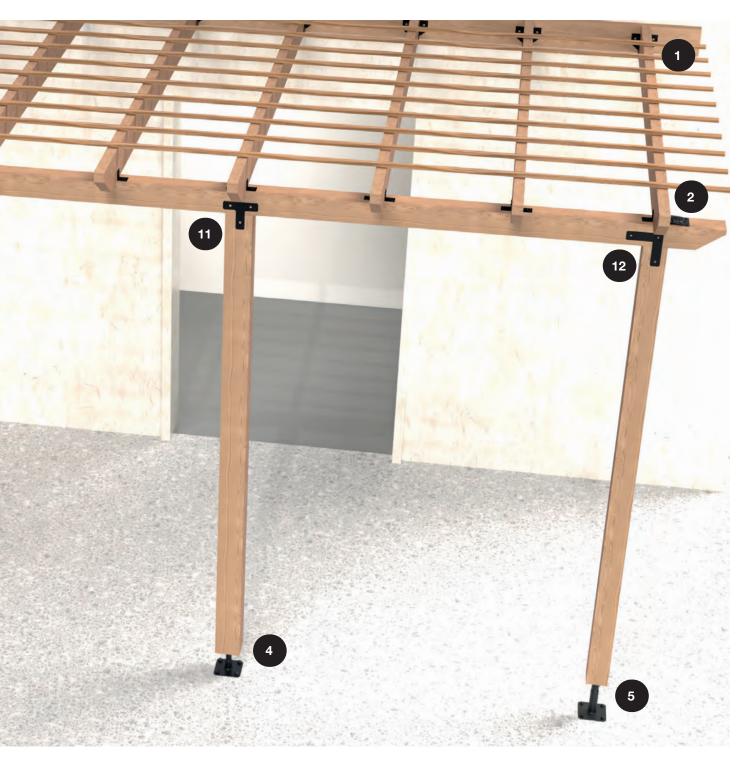
**PPJNCPB** 






























Haus und Garten

# **SIMPSON** Strong-Tie

#### Lochbänder - BANW / FBAR



BANS und BANW Lochbänder werden zur Verankerung von Holzbauteilen im niederen Lastbereich und als konstruktive Anschlüsse verwendet. Typische Verwendungsbereiche sind Spielgeräte, Leitungsbefestigungen, leichte Deckenabhängungen und Eckhalterungen.

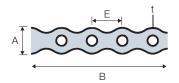
Die FB Lochbänder (practilett®) werden aus sendzimirverzinktem Stahl hergestellt und einige Größen erhalten eine zusätzliche farbige Ummantelung aus schlagfestem Kunststoff. Sie werden für konstruktive Zwecke wie Kabelbefestigungen oder Rohrabhängungen verwendet. Die Bänder sind in Hartkartonabrollbehältern erhältlich.

Bitte beachten: Die hier aufgezeigten Lochbänder eignen sich nicht zur tragenden Aussteifung von Gebäuden. Für diesen Zweck sind ausschließlich Windrispenbänder geeignet (Kapitel 4).

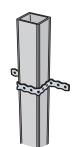


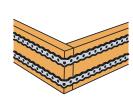






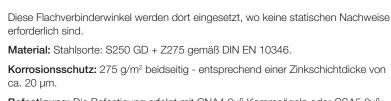

Einige Typen

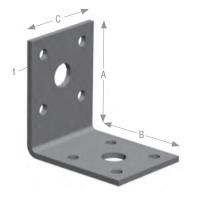

Art. Nr. Löcher Material Abmessung [mm] Α B [m] BANW071203S Werkstoff 1.4401 12 3 0,7 14 5 S250GD + Z275 BANW071210 12 10 0,7 14 5 BANW071710 S250GD + Z275 17 10 0,7 19,8 7 S250GD + Z275 BANW071725 17 25 0,7 19,8 7 DX51D+Z kunststoffummantelt 5,7 2,4 FBPR16B 16 10 0,8 20,0 FBAR26-B DX51D+Z 10 1,2 8,6












#### Flachverbinderwinkel – **FLVW**





FLVW40/100

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN 10346.

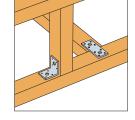
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.



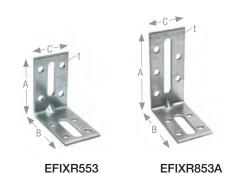


SIMPSON


Strong-Tie

Produktabmessungen

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.


| Produktab  | Tabelle 1 |         |        |     |       |
|------------|-----------|---------|--------|-----|-------|
| Art. Nr.   |           | Abmessu | Löcher |     |       |
|            | Α         | В       | С      | t   | Ø     |
| FLVW40/100 | 52,2      | 52,2    | 40     | 2,5 | 5; 11 |
| FLVW40/180 | 93,0      | 93,0    | 40     | 3,0 | 5; 11 |



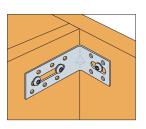


FLVW40/180

# Montagewinkel - EFIXR



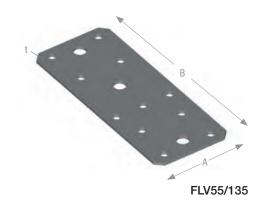
EFIXR ungleichschenkliger Winkel mit Langlöchern zur variablen Befestigung.


Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN 10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.




| FIOUUKIAD |                |    |    | Tabelle 1 |        |                       |        |                       |
|-----------|----------------|----|----|-----------|--------|-----------------------|--------|-----------------------|
| Art. Nr.  | Abmessung [mm] |    |    |           | Löc    | her                   |        |                       |
|           | A              | В  | С  | t         | Ø      |                       |        |                       |
| EFIXR553  | 50             | 54 | 30 | 2,0       | 4 x Ø5 | Langloch:<br>6,5 x 30 | 4 x Ø5 | Langloch:<br>8,5 x 30 |
| EFIXR853A | 80             | 55 | 30 | 2,5       | 6 x Ø5 | Langloch:<br>6,5 x 55 | 4 x Ø5 | Langloch:<br>8,5 x 30 |



EFIXR853A

#### Flachverbinder - FLV





FLV Flachverbinder sind für schnelle und einfache Anschlüsse im konstruktiven Bereich vorgesehen. Die unterschiedlichen Löcher ermöglichen die Verwendung von Nägeln und größeren Schrauben/ Bolzen.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN 10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

Befestigung: Die Standardbefestigung erfolgt mit CNA4,0xl Kammnägeln

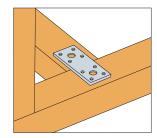
oder CSA5,0xl Schrauben.



#### Produktabmessungen

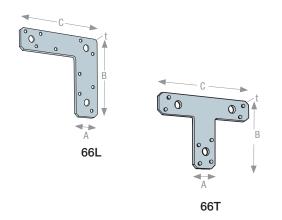
Tabelle 1

Tabelle 1


| Art. Nr.  | Abr | nessung [r | Löcher |        |
|-----------|-----|------------|--------|--------|
|           | А   | В          | t      | Ø      |
| FLV40/100 | 40  | 100        | 2,5    | 5; 11  |
| FLV40/180 | 40  | 180        | 3,0    | 5; 11  |
| FLV55/135 | 55  | 135        | 2,0    | 5; 8,5 |



12.5 42.5 67.5 12.5


FLV55/135





FLV40/100

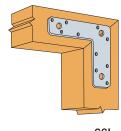
#### Winkel L und T-form - 66

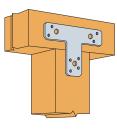


Flach-L und T-Winkel zur seitlichen Verstärkung von Rahmenecken.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN 10346.

Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20  $\mu m$ .

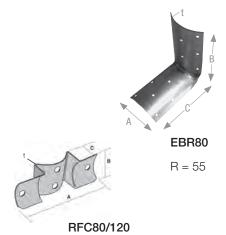

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.






#### Produktabmessungen

| Art. Nr. |    | Löcher |     |     |               |  |  |  |
|----------|----|--------|-----|-----|---------------|--|--|--|
|          | А  | В      | С   | t   | Ø             |  |  |  |
| 66L      | 38 | 150    | 150 | 2,0 | 4; 11         |  |  |  |
| 66T      | 38 | 125    | 150 | 2.0 | <i>I</i> ⋅ 11 |  |  |  |






66L

#### Rundholzverbinder - EBR / RFC





Diese Winkel sind speziell für die Montage von Rundhölzern entwickelt worden. Durch die gekrümmte Form der Schenkel sind sie vielseitig einsetzbar.

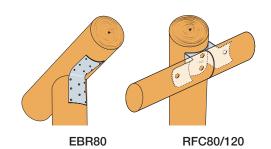
EBR60 für Rundhölzer ca. Ø80-100 mm. EBR80 für Rundhölzer ca. Ø100-120 mm.

Material: Stahlsorte: S250 GD + Z275 gemäß DIN EN 10346.

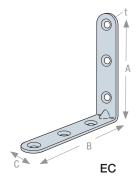
Korrosionsschutz: 275 g/m² beidseitig - entsprechend einer Zinkschichtdicke von ca. 20 µm.

**Befestigung:** Die Befestigung erfolgt mit CNA4,0x $\ell$  Kammnägeln oder CSA5,0x $\ell$ Schrauben.








### Produktabmessungen

Art. Nr. Abmessung [mm] Löcher С Α Ø EBR60-R 80 80 57 1,5 5 EBR80-B 74 1,5 5 123 123 RFC80/120 185 70 32 2,0 11



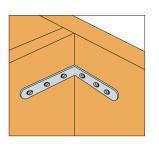
#### Stuhlwinkel - EC



EC Stuhlwinkel eignen sich für vielfältige Anwendungen im Heimwerkerbereich und Möbelbau.

Material: Stahlsorte: Stahl S235.

Tabelle 1


Korrosionsschutz: galvanisch verzinkt.

Befestigung: Die Befestigung erfolgt mit CNA4,0xl Kammnägeln oder CSA5,0xl Schrauben.



#### Produktahmessungen

| TOduktabilik | rabelle i |                |    |     |     |  |  |  |
|--------------|-----------|----------------|----|-----|-----|--|--|--|
| Art. Nr.     |           | Abmessung [mm] |    |     |     |  |  |  |
|              | Α         | В              | С  | t   | Ø   |  |  |  |
| EC30/2       | 30        | 30             | 15 | 2,0 | 4,2 |  |  |  |
| EC40/2       | 40        | 40             | 15 | 2,0 | 4,2 |  |  |  |
| EC50/2       | 50        | 50             | 15 | 2,0 | 4,2 |  |  |  |
| EC80/2,5     | 80        | 80             | 18 | 2,0 | 4,2 |  |  |  |



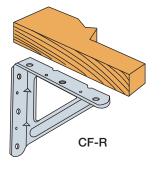
EC

## Konsolwinkel – CF-R



CF-R Konsolwinkel sind zur Befestigung von Regalböden geeignet.

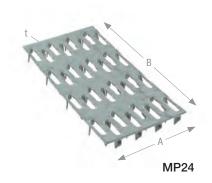
Material: Stahlblech.


Tabelle 1

Korrosionsschutz: sendzimirverzinkt.



C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.


| Art. Nr. |     | Abmessı | Löcher |     |      |
|----------|-----|---------|--------|-----|------|
|          | А   | В       | С      | t   | Ø    |
| CF-R     | 154 | 127     | 29     | 1,6 | 4; 7 |





# Nagelplatten - MP

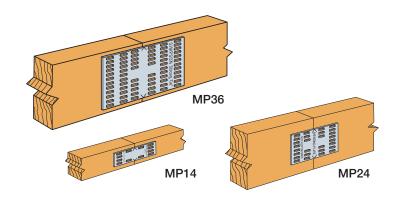




MP Nagelplatten werden für einfache Anschlüsse zwischen Hölzern durch flächiges Einpressen verwendet.

Material: Stahlsorte: S250GD + Z275 gemäß DIN EN 10346.

Korrosionsschutz:  $275 \text{ g/m}^2$  beidseitig - entsprechend einer Zinkschichtdicke von ca.  $20 \, \mu \text{m}$ .


Befestigung: Erfolgt durch die MP selbst. Die Nagellänge beträgt bei allen Größen ca. 10 mm





| _  |     |    |
|----|-----|----|
| 10 | hal |    |
| 10 |     | 15 |

| Art. Nr. | Abmessung [mm] |     |     |  |  |
|----------|----------------|-----|-----|--|--|
|          | А              | В   | t   |  |  |
| MP14     | 25             | 102 | 1,0 |  |  |
| MP24     | 51             | 102 | 1,0 |  |  |
| MP36     | 76             | 152 | 1,0 |  |  |



#### Pfostenanker - PPH / PPHB



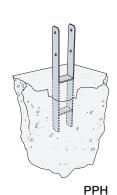


PPH Pfostenanker bestehen aus zwei außenliegenden Stahlteilen mit Zwischenblechen und sind in verschiedenen Breiten erhältlich.

Der Anschluss am Holz erfolgt über Ø10 mm Bolzen oder Schlüsselschrauben. Die Pfostenanker sind nach Bearbeitung rundumfeuerverzinkt. Die Verankerung erfolgt durch direktes Einbetonieren oder beim PPHB durch Setzen von Ø10 mm Ankerbolzen.

Material: Stahlsorte: S235JR.

Korrosionsschutz: Nach Bearbeitung rundum feuerverzinkt. Zinkschichtdicke ca.


55 µm.





#### Produktabmessungen

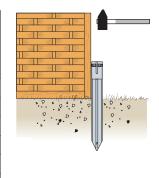
| Produktabmessungen |     |                |     |     |     |        | Tabelle 1 |  |
|--------------------|-----|----------------|-----|-----|-----|--------|-----------|--|
| Art. Nr.           |     | Abmessung [mm] |     |     |     |        |           |  |
|                    | А   | В              | С   | D   | E   | t      | Ø         |  |
| PPH90G             | 90  | 60             | 600 | 300 | -   | 6,0    | 11        |  |
| PPH100G            | 100 | 60             | 600 | 300 | ı   | 6,0    | 11        |  |
| PPH120G            | 120 | 60             | 600 | 300 | ı   | 6,0    | 11        |  |
| PPHB70G            | 70  | 50             | 206 | 200 | 200 | 5; 6,0 | 11        |  |
| PPHB90G            | 90  | 50             | 206 | 200 | 200 | 5; 6,0 | 11        |  |
| PPHB100G           | 100 | 50             | 206 | 200 | 200 | 5; 6,0 | 11        |  |
| PPHB120G           | 120 | 50             | 206 | 200 | 200 | 5; 6,0 | 11        |  |

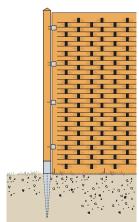


## Bodenhülsen - PPJET



PPJET Bodenhülsen für leichte Zäune sind in verschiedenen Ausführungen und Größen erhältlich.


Material: Stahlsorte: S235JR.


Korrosionsschutz: Nach Bearbeitung rundum feuerverzinkt. Zinkschichtdicke ca. 55 μm.





| Produktabme       | essung | gen |        |     |   | Tabelle 1 |
|-------------------|--------|-----|--------|-----|---|-----------|
| Art. Nr.          |        |     | Löcher |     |   |           |
|                   | А      | В   | С      | D   | t | Ø         |
| PPJET50/100/750G  | 50/100 | 100 | 150    | 750 | 2 | 11        |
| PPJET50/50/750G   | 50     | 50  | 150    | 750 | 2 | 11        |
| PPJET70/70/750G   | 70     | 70  | 150    | 750 | 2 | 11        |
| PPJET75/75/750G   | 75     | 75  | 150    | 750 | 2 | 11        |
| PPJET90/90/750G   | 90     | 90  | 150    | 750 | 2 | 11        |
| PPJET90/90/900G   | 90     | 90  | 150    | 900 | 2 | 11        |
| PPJET100/100/750G | 100    | 100 | 150    | 750 | 2 | 11        |





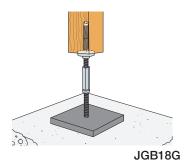
#### Pfostenhalter - JGB18G



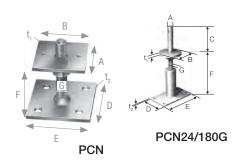


JGB18G Pfostenhalter werden mittels Ankerbolzen am Betonfundament angeschlossen. Das 16 mm Holzgewinde wird in eine Ø12 mm Bohrung bis zum Kontakt mit der Druckscheibe eingedreht. Durch die kraftschlüssige Verschraubung ist eine konstruktive Zugverankerung gewährleistet.

Material: Stahlsorte: S235JR.


Korrosionsschutz: Nach Bearbeitung rundum feuerverzinkt. Zinkschichtdicke ca.






| Produkta | bmessungen |
|----------|------------|
|----------|------------|

Tabelle 1 Art. Nr. Abmessung [mm] Löcher Ε B C D G Ø Α t, JGB18G 16 56 116 160 90 185-235 20 5 5 3



#### Pfostenhalter - PCN

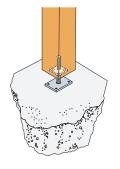


PCN Pfostenhalter sind höhenverstellbar und können so Unebenheiten in der Höhe ausgleichen.

Die Druckplatte der PCN70-R und PCN80-R ist lose abnehmbar, während die Druckplatte der PCN24 drehbar, jedoch nicht abnehmbar ist. Der Anschluss des PCN24 an den Pfosten erfolgt in eine Ø24 mm Bohrung und ggf. zusätzlich mit einem Ø10 mm Stabdübel durch den Dorn.

Material: Stahlsorte: S235JR.

Korrosionsschutz: Nach Bearbeitung rundum feuerverzinkt. Zinkschichtdicke ca. 55 µm.






| F | Produktabmessungen    |    |                                                         |     |     |        |    |     |     |       |  |  |
|---|-----------------------|----|---------------------------------------------------------|-----|-----|--------|----|-----|-----|-------|--|--|
|   | Art. Nr.              |    | Abmessung [mm]                                          |     |     |        |    |     |     |       |  |  |
|   |                       | Α  | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |     |     |        |    |     |     |       |  |  |
|   | PCN70-R 1)            | 70 | 70                                                      | 90  | 90  | 30–100 | 16 | 6,0 | 5,0 | 5; 12 |  |  |
|   | PCN80-R <sup>2)</sup> | 80 | 80                                                      | 100 | 140 | 40-200 | 20 | 8,0 | 8,0 | 9; 12 |  |  |

<sup>1) 1</sup> Mutter

| Produktabme  | essur | ngen           |     |     |     |         |    |    |                | Tabelle 2 |  |  |
|--------------|-------|----------------|-----|-----|-----|---------|----|----|----------------|-----------|--|--|
| Art. Nr.     |       | Abmessung [mm] |     |     |     |         |    |    |                |           |  |  |
|              | ΑØ    | ВØ             | С   | D   | E   | F       | G  | t, | t <sub>2</sub> | Ø         |  |  |
| PCN24X130G-R | 24    | 80             | 125 | 100 | 180 | 130-195 | 24 | 8  | 6              | 6; 11; 14 |  |  |
| PCN24X180G-R | 24    | 80             | 125 | 100 | 180 | 180-245 | 24 | 8  | 6              | 6; 11; 14 |  |  |
| PCN24X230G-R | 24    | 80             | 125 | 100 | 180 | 230-295 | 24 | 8  | 6              | 6; 11; 14 |  |  |
| PCN24X280G-R | 24    | 80             | 125 | 100 | 180 | 280-345 | 24 | 8  | 6              | 6; 11; 14 |  |  |



PCN80-R

<sup>2) 2</sup> Muttern

Pfostenhalter - PCNB40G / PCNS40G





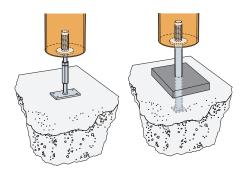
PCNB40G Pfostenhalter sind auch im eingebauten Zustand noch höhenverstellbar.

Der Anschluss der Pfostenhalter an die Stütze erfolgt in eine Ø40 mm Bohrung, vorrangig mit Abbundanlagen gebohrt. Bei konventionellem Abbund empfehlen wir unsere Bohrschablone BTBS40.

PCNB40G Stützenfüße werden mittels eines 36 mm Gabelschlüssels, die PCNS40G mit einem % Zoll Vierkant eingedreht. Die Köpfe dürfen nur einmal in dieselbe Bohrung eingeschraubt werden.

Material: Stahlsorte: S235JR.

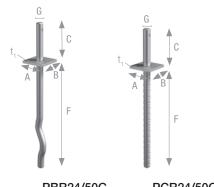
Korrosionsschutz: Nach Bearbeitung rundum feuerverzinkt. Zinkschichtdicke ca. 55 µm.


Tabelle 1





Produktabmessungen


| Art. Nr.  |    | Abmessung [mm] |     |    |     |         |    |    |                |       |
|-----------|----|----------------|-----|----|-----|---------|----|----|----------------|-------|
|           | ΑØ | ВØ             | С   | D  | Е   | F       | G  | t, | t <sub>2</sub> | Ø     |
| PCNB40G-R | 40 | 105            | 120 | 90 | 160 | 190-250 | 24 | 8  | 10             | 4; 12 |
| PCNS40G-R | 40 | 105            | 120 | 70 | 70  | 450     | 48 | 8  | 10             | _     |



PCNB40G

PCNS40G

### Pfostenhalter - PBR24/50G / PCR24/50G



PBR24/50G

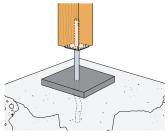
PCR24/50G

PBR24/50G / PCR24/50G Pfostenhalter zum Einbetonieren für leichte Konstruktionen ohne statischen Nachweis.

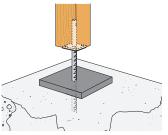
Der Anschluss des PBR24/50G / PCR24/50G an den Pfosten erfolgt in eine Ø24 mm Bohrung und ggf. zusätzlich mit einem Ø10 mm Stabdübel durch den

Material: Stahlsorte: S235JR.

Korrosionsschutz: Nach Bearbeitung rundum feuerverzinkt. Zinkschichtdicke ca.


55 µm.






#### Produktabmessungen

| Produktabmessungen |    |                |     |     |    |     |       |  |  |  |  |  |
|--------------------|----|----------------|-----|-----|----|-----|-------|--|--|--|--|--|
| Art. Nr.           |    | Abmessung [mm] |     |     |    |     |       |  |  |  |  |  |
|                    | А  | A B C F G t    |     |     |    |     |       |  |  |  |  |  |
| PBR24/50G          | 80 | 80             | 123 | 495 | 24 | 8,0 | 9; 11 |  |  |  |  |  |
| PCR24/50G          | 80 | 80             | 123 | 400 | 24 | 8,0 | 9; 11 |  |  |  |  |  |



PBR24/50G



PCR24/50G

# Pfostenhalter - PDS60G



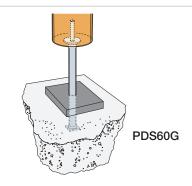


PDS60G Pfostenhalter werden direkt einbetoniert oder nachträglich in Köcherfundamenten vergossen.

Der Anschluss des PDS60G an den Pfosten erfolgt in eine Ø24 mm Bohrung und ggf. zusätzlich mit einem Ø10 mm Stabdübel durch den Dorn.

Material: Stahlsorte: S235JR.

Tabelle 1


Korrosionsschutz: Nach Bearbeitung rundum feuerverzinkt. Zinkschichtdicke ca. 55 µm.





#### Produktabmessungen

| Art. Nr. |    | Abmessung [mm] |     |    |    |     |      |     |                |    |
|----------|----|----------------|-----|----|----|-----|------|-----|----------------|----|
|          | A  | В              | С   | D  | Е  | F   | G    | t,  | t <sub>2</sub> | Ø  |
| PDS60G   | 24 | 80             | 125 | 50 | 50 | 600 | 42,3 | 6,0 | 5,0            | 11 |



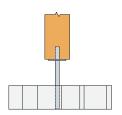
#### Pfostenhalter - PA



PA Pfostenhalter sind für leichte, nicht tragende Konstruktionen geeignet.

Material: Stahlsorte: S235JR & B550 BR + AC gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundumfeuerverzinkt; Zinkschichtdicke ca. 55 µm gemäß EN ISO 1461.


Befestigung: Die PA Pfostenhalter werden in vorbereitete Bohrungen in einem Betonfundament mit Klebemörtel eingeklebt oder direkt einbetoniert. Der Anschluss am Pfosten erfolgt über eine Bohrung mit Ø16 bzw. 20 mm und Druckkontakt.





#### Produktabmessungen

| Produktabme | Produktabmessungen Tabelle 1 |                |    |     |    |     |  |  |  |  |  |
|-------------|------------------------------|----------------|----|-----|----|-----|--|--|--|--|--|
| Art. Nr.    |                              | Abmessung [mm] |    |     |    |     |  |  |  |  |  |
|             | А                            | A B C F G t    |    |     |    |     |  |  |  |  |  |
| PA70G       | 70                           | 70             | 50 | 200 | 16 | 5,0 |  |  |  |  |  |
| PA90G       | 90                           | 90             | 50 | 200 | 20 | 6,0 |  |  |  |  |  |



PA

#### Pfostenhalter - PBL4540 / PBE60G

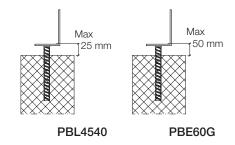




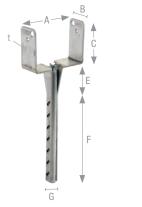
PBL4540 und PBE60G Pfostenhalter sind für leichte, nicht tragende Konstruktionen geeignet.

Material: Stahlsorte: S235JR & B550 BR+AC gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundumfeuerverzinkt; Zinkschichtdicke ca. 55  $\mu m$  gemäß EN ISO 1461.


**Befestigung:** Der Anschluss der PBL4540 und PBE60G Pfostenhalter erfolgt in vorbereitete Bohrungen in einem Betonfundament mit Klebemörtel oder durch direktes Einbetonieren. Der Anschluss am Pfosten erfolgt mit Schlüsselschrauben, Bolzen oder CSA Verbinderschrauben.






#### Produktabmessungen

| Art. Nr. |    | Abmessung [mm] |    |     |    |     |       |  |  |
|----------|----|----------------|----|-----|----|-----|-------|--|--|
|          | Α  | В              | С  | F   | G  | t   | Ø     |  |  |
| PBL4540  | 45 | 40             | 90 | 200 | 14 | 4,0 | 5; 9  |  |  |
| PBE60G-B | 70 | 60             | 92 | 450 | 16 | 4,0 | 9; 11 |  |  |



#### Gefalteter Stützenfuß - PPWSxxZ



**PPWSxxZ** 

PBWSxxZ Stützenfüße werden ohne zu schweißen aus einem Stück Blech hergestellt. Die Dolle ist S-förmig gekantet,was ihr eine große Stabilität verleiht. PBWSxxZ sind in den Breiten 70; 90 und 100 mm verfügbar und bis in der Nutzungsklasse 2 anwendbar. Der Einbau erfolgt in Betonfundamente ab der Festigkeitsklasse C12/15. PBWSxxZ Stützenfüße können vertikale Druck und Zuglasten aufnehmen und sind CE gekennzeichnet.

Material: Stahlsorte: S250 GD + ZPRO Korrosionsschutz: Glatte Zinklegierung

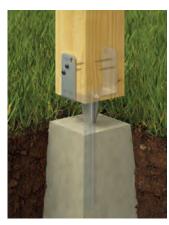
Tabelle 1

Befestigung: Der Anschluss an das Holz erfolgt mit CNA4,0xl Kammnägeln,

CSA5,0xl oder 8 mm Holzschrauben

Tabelle 1

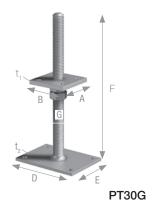









ETA-06/0106 DoP-e06/0106


| Art. Nr. |     |    | Bohru | ıngen |     |    |     |          |            |
|----------|-----|----|-------|-------|-----|----|-----|----------|------------|
|          | Α   | В  | С     | E     | F   | G  | t   | Ø 5 [mm] | Ø 8,5 [mm] |
| PBWS70Z  | 70  | 40 | 87    | 50    | 150 | 22 | 3,0 | 2 x 2    | 2 x 1      |
| PBWS90Z  | 90  | 40 | 77    | 50    | 150 | 22 | 3,0 | 2 x 2    | 2 x 1      |
| PBWS100Z | 100 | 40 | 72    | 50    | 150 | 22 | 3,0 | 2 x 2    | 2 x 1      |



**PPWSxxZ** 

#### Pfostenhalter - PT30G



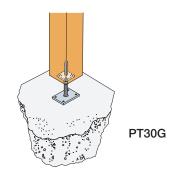


PT30G Pfostenhalter sind höhenverstellbar und für den nicht tragenden Bereich zum Aufdübeln auf ein Betonfundament.

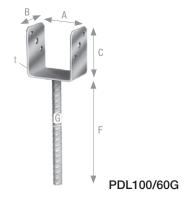
Der Anschluss am Pfosten erfolgt über eine Ø24 mm Bohrung im Hirnholz und die konstruktive Verschraubung der Druckplatte.

Material: Stahlsorte: S235JR.

Tabelle 1


Korrosionsschutz: Nach Bearbeitung rundum feuerverzinkt. Zinkschichtdicke ca. 55 µm.






#### Produktabmessungen

| Art. Nr. |    | Abmessung [mm] |     |     |     |    |     |                |       |  |
|----------|----|----------------|-----|-----|-----|----|-----|----------------|-------|--|
|          | А  | В              | D   | E   | F   | G  | t,  | t <sub>2</sub> | Ø     |  |
| PT30G    | 80 | 80             | 140 | 100 | 300 | 24 | 8,0 | 5,0            | 9; 12 |  |



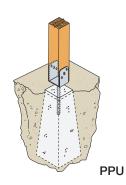
### Pfostenhalter - PPU / PDL



PPU und PDL Pfostenhalter in U-Form sind zur Aufnahme von Pfosten und Riegeln im konstruktiven Bereich geeignet.

Die Typen PDL sind mit einem extra langen Betonstab ausgestattet.

Material: Stahlsorte: S235JR.


Korrosionsschutz: Nach Bearbeitung rundum feuerverzinkt. Zinkschichtdicke ca. 55 µm.

Befestigung: Der Anschluss erfolgt durch Einbetonieren im Fundament und am Holz durch Bolzen oder Schlüsselschrauben.





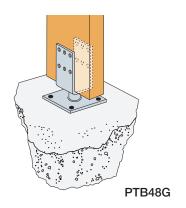
| Produktabme  | essung | gen            |     |     |    |     | Tabelle 1 |  |  |  |  |  |
|--------------|--------|----------------|-----|-----|----|-----|-----------|--|--|--|--|--|
| Art. Nr.     |        | Abmessung [mm] |     |     |    |     |           |  |  |  |  |  |
|              | А      | В              | С   | F   | G  | t   | Ø         |  |  |  |  |  |
| PPU70/60G    | 70     | 60             | 97  | 200 | 16 | 4,0 | 9; 11     |  |  |  |  |  |
| PPU80/60G    | 80     | 60             | 92  | 200 | 16 | 4,0 | 9; 11     |  |  |  |  |  |
| PPU90/60G    | 90     | 60             | 97  | 200 | 16 | 4,0 | 9; 11     |  |  |  |  |  |
| PPU100/60G   | 100    | 60             | 92  | 200 | 16 | 4,0 | 9; 11     |  |  |  |  |  |
| PPU120/60G-B | 120    | 60             | 102 | 200 | 16 | 4,0 | 9; 11     |  |  |  |  |  |
| PPU140/60G-B | 140    | 60             | 92  | 200 | 16 | 4,0 | 9; 11     |  |  |  |  |  |
| PDL100/60G-B | 100    | 60             | 92  | 450 | 16 | 4,0 | 9; 11     |  |  |  |  |  |



### Pfostenhalter - PTB48G



PTB48G Pfostenhalter mit U-Form eignen sich für leichte Konstruktionen im nicht tragenden Bereich. Der Anschluss am Betonfundament erfolgt mit Ankerbolzen und die Befestigung am Holz mit CNA Kammnägeln oder CSA Verbinderschrauben.


Material: Stahlsorte: S235JR gemäß EN10025.

Korrosionsschutz: nach Bearbeitung rundumfeuerverzinkt; Zinkschichtdicke ca.  $55~\mu m$  gemäß EN ISO 1461.





| Produktabmessungen |                |    |     |     |     |    |        | Tabelle 1 |                |      |
|--------------------|----------------|----|-----|-----|-----|----|--------|-----------|----------------|------|
| Art. Nr.           | Abmessung [mm] |    |     |     |     |    | Löcher |           |                |      |
|                    | А              | В  | С   | D   | E   | F  | G      | t,        | t <sub>2</sub> | Ø    |
| PTB48G             | 48             | 60 | 106 | 100 | 100 | 30 | 24     | 4,0       | 5,0            | 5; 9 |





# **SIMPSON** Strong-Tie

# Komplette Kits zur Schnellmontage

Mit diesen Kollektionen bekommt der Verarbeiter einen Pfostenanker und die zur Montage notwendigen Verbindungsmitteln in einem Paket geliefert.

#### Vorteile:

- Optimal aufeinander abgestimmt
- Alles dabei
- Leicht einzubauen

#### Einsatzbereiche:

Vordächer, Anbauten, Terrassenüberdachungen, Pergolen, Paneele, Zäune, Gartenhäuser u.v.m.

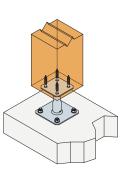


ΕZ

#### **KIT FIX APB100/150** Verstellbarer Stützenfuß



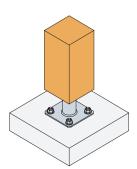





ETA-07/0285 DoP-e07/0285





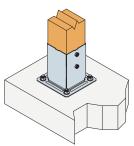

ETA-11/0080 DoP-e11/0080



### **KIT FIX PPA100** Fester Stützenfuß



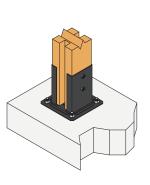





KIT FIX Pfostenanker inkl. Zubehör

# KIT FIX PPJBT70 / PPJBT90 Quadratischer Pfostenhalter





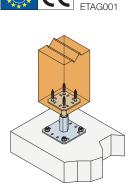



# KIT FIX PPJNC70PB / PPJNC90PB Quadratischer Pfostenhalter (schwarz)








ETA-07/0285 DoP-e07/0285 ETAG015

ETA-11/0080 DoP-e11/0080

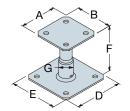
# KIT FIX PPRC Nach der Montage verstellbarer Stützenfuß



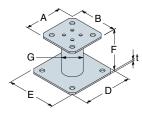




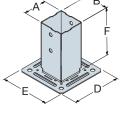
# Praktische Helfer in der Übersicht




Besuchen Sie unsere Website strongtie.de oder rufen Sie uns direkt unter +49 6032 8680-0 an.


Unser Team steht Ihnen gern beratend für Fragen zu den Produkten oder technischen Anwendungen sowie zur Unterstützung bei Ihrer Projektplanung zur Verfügung.

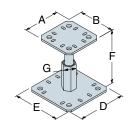
#### Abmessungen


| 7                              |                           |     |     |     |         |    |     |                | 1           |               |  |
|--------------------------------|---------------------------|-----|-----|-----|---------|----|-----|----------------|-------------|---------------|--|
| Art Nr                         | Abmessungen [mm] Art. Nr. |     |     |     |         |    |     |                | Löc         | Löcher        |  |
| AIT. NI.                       | Α                         | В   | D   | Е   | F       | G  | t,  | t <sub>2</sub> | Ø           | Anzahl        |  |
| KIT FIX APB100/150             | 100                       | 100 | 130 | 130 | 100–150 | 20 | 4   | 4              | 12          | 4; 4          |  |
| KIT FIX PPA100                 | 100                       | 100 | 130 | 130 | 100     | 48 | 4   | 4              | 12          | 4; 4          |  |
| KIT FIX PPJBT70                | 71                        | 71  | 150 | 150 | 150     | -  | 2   | 2,5            | 11;<br>12   | 4; 4          |  |
| KIT FIX PPJBT90                | 91                        | 91  | 150 | 150 | 150     | -  | 2   | 2,5            | 11;<br>12   | 4; 4          |  |
| KIT FIX PPJNC70PB<br>(schwarz) | 71                        | 71  | 150 | 150 | 153     | -  | 2,5 | 2,5            | 8;<br>12    | 4; 4          |  |
| KIT FIX PPJNC90PB<br>(schwarz) | 91                        | 91  | 150 | 150 | 153     | -  | 2,5 | 2,5            | 8;<br>12    | 4; 4          |  |
| KIT FIX PPRC                   | 100                       | 100 | 130 | 130 | 100–150 | 20 | 5   | 5              | 12;<br>6×12 | 4; 4;<br>8; 8 |  |



APB100/150




PPA100



PPJBT70 / PPJBT90



PPJNC70PB / PPJNC90PB



PPRC

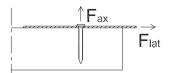








# Verbindungsmittel


| Verbindungsmittel – Allgemeines     | 316 |
|-------------------------------------|-----|
| Verbinderschrauben – CSA            | 317 |
| Kammnägel – CNA                     | 318 |
| Sparrennägel – SN                   | 319 |
| Senkkopfschrauben – FTETL           |     |
| Stabdübel – STD / STDP              |     |
| Scheibendübel – BULLDOG®            |     |
| Scheibendübel – C10 / C11           | 324 |
| Ringdübel / Scheibendübel – A1 / B1 | 325 |
| ZYKLOP™-Verbinder – ZYKT            |     |
| ZYKLOP™-Verbinder – ZUBEHÖR         |     |
| Unterlegscheiben – USxx             |     |
| Ladungssicherung – KOLLIBRODD®      |     |
|                                     |     |

## Verbindungsmittel – Allgemeines



Anwendung: Simpson Strong-Tie®-Verbindungsmittel sind für die Befestigung von Holzverbindern in tragenden Holzkonstruktionen vorgesehen. Die meisten im Katalog aufgeführten Produkte sind für die Verwendung mit CNA Kammnägeln oder CSA Verbinderschrauben ausgelegt. Bestimmte Anwendungen erfordern besondere Verbindungsmittel, zum Beispiel bei Hirnholzanschlüssen oder besonderen Umgebungsbedingungen.

Materialien und Korrosionsschutz: Nägel und Schrauben werden aus Kohlenstoffstahl oder aus nichtrostenden Stählen 1.4401, 1.4404 hergestellt. Stabdübel und Passbolzen bestehen aus Stahl S235JR oder S355. Der Korrosionsschutz von Verbindungsmitteln ist eine galvanische Verzinkung mit etwa 12 µm Zinkauflage oder bei einzelnen Produkten eine Feuerverzinkung mit ca. 50  $\mu m$  Zinkschichtdicke.







#### Verbinderschrauben – CSA





CSA Schrauben sind speziell für Stahlblech-Holz-Verbindungen entwickelt und zugelassen. Der passgenaue Ansatz des Schaftes unter dem Schraubenkopf gewährleistet eine akkurate Kraftübertragung auf die Lochleibung der Verbinder. Die scharfe Schneidspitze sorgt für ein exaktes und sofortiges Ansetzen der Schraube im Holz. Für die Randabstände sowie die Abstände untereinander gelten die gleichen Angaben wie für die CNA4,0x $\ell$ Kammnägeln. Die Werte der Tragfähigkeit sind in der ETA geregelt.

Material: Kohlenstoffstahl

Verarbeitung: Zum Eindrehen der CSA Schrauben wird ein Schrauber mit Drehmomenteneinstellung ausdrücklich empfohlen.









ETA-04/0013 DoP-e04/0013

Tahalla 1

Einige Typen

#### Produktabmessungen

| 1 TOGGINGSTITE             | oodi igoi i | Tabelle T |                                                                 |                                  |  |
|----------------------------|-------------|-----------|-----------------------------------------------------------------|----------------------------------|--|
| Art. Nr.                   | Abmessu     | ung [mm]  | Charakteristische Werte<br>der Tragfähigkeit [kN] <sup>1)</sup> |                                  |  |
|                            | Ø           | L         | R <sub>ax,k</sub> 2)                                            | R <sub>lat,k</sub> <sup>2)</sup> |  |
| CSA4,0x30                  | 4,0         | 30        | 1,28                                                            | 1,36                             |  |
| CSA5,0x25                  |             | 25        | 1 20                                                            | 1.40                             |  |
| CSA5,0x25S <sup>3)</sup>   |             | 20        | 1,38                                                            | 1,49                             |  |
| CSA5,0x35                  |             | 35        | 2,11                                                            | 1,99                             |  |
| CSA5,0x35S <sup>3)</sup>   |             | 30        | ۷,۱۱                                                            | 1,99                             |  |
| CSA5,0x40                  | 5,0         |           |                                                                 |                                  |  |
| CSA5,0x40S <sup>3)</sup>   |             | 40        | 2,47                                                            | 2,25                             |  |
| CSA5,0x40HCR <sup>4)</sup> |             |           |                                                                 |                                  |  |
| CSA5,0x50-DECP 5)          |             | 50        | 3,20                                                            | 2,63                             |  |
| CSA5,0x80-DE 5)            |             | 80        | 5,38                                                            | 3,50                             |  |

- $^{\mbox{\tiny 1)}}$  Gilt für Holzfestigkeitsklasse C24, für andere Festigkeitsklassen siehe ETA-04/0013
- <sup>2)</sup> ax = Belastung auf Herausziehen; lat = Belastung auf Abscheren <sup>3)</sup> Nichtrostender Stahl Werkstoff 1.4401
- 4) Hochkorrosionsbeständiger Stahl Werkstoff 1.4529

#### Nägel oder Schrauben?

In den meisten Tabellen sind als Verbindungsmittel CNA Kammnägel angegeben. Die Nägel dürfen gemäß Tabelle 2 ohne weiteren Nachweis durch CSA Schrauben ersetzt werden. Im umgekehrten Fall ist ein Nachweis zu führen. Für Abstände zu Rändern und untereinander gelten die gleichen Werte wie für CNA Nägel.

## Vergleich CNA/CSA

| Tabel | le | 2 |
|-------|----|---|
|-------|----|---|

| CNA        | CSA       |
|------------|-----------|
| CNA3,1x40  | CSA4,0x30 |
| CNA4,0x35  | CSA5,0x35 |
| CNA4,0x40  | GSAS,UXSS |
| CNA4,0x50  | CSA5,0x40 |
| CNA4,0x60  |           |
| CNA4,0x75  | CSA5,0x50 |
| CNA4,0x100 |           |

#### Anwendungshinweis:

Um Kontaktkorrosion zu vermeiden, sollen Verbinder aus nichtrostendem Stahl nur mit Verbindungsmitteln aus einem gleichwertigen Stahl angeschlossen werden.



#### Der richtige Bit...

CSA Schrauben haben einen Kraftantrieb für die Bitgröße T20: z.B. T20 Wera 867/1

Standard T20 WERA 867/1





<sup>5)</sup> Passend für ATFN

### Kammnägel – CNA





CNA Kammnägel wurden speziell für die Befestigung von Simpson Strong-Tie® Holzverbindern entwickelt. Der konische Ansatz des Schaftes unter dem Nagelkopf gewährleistet bei Stahlblech-Holz-Nagelverbindungen eine exakte Kraftübertragung. Die Werte der Tragfähigkeit sind in der ETA bzw. EN geregelt. CNA Kammnägel sind zur Identifizierung im eingeschlagenen Zustand, auf dem Kopf mit der Nagellänge gekennzeichnet.

Material: Kohlenstoffstahl C9D oder C10D

Verarbeitungshinweis: Falls in den ETA der einzelnen Produkte nicht anders geregelt, gelten für die Verwendung von CNA Nägeln bei Stahlblech-Holz-Verbindungen bzgl. der Abstände die Angaben gemäß EC5.



EN14592 DoP-h13/0012











**NEUHEIT!** 

CNA Kammnägel jetzt mit Längenangabe auf dem Kopf. Überprüfen der Verbindung auch nach der Montage

Einige Typen

### Produktahmessungen

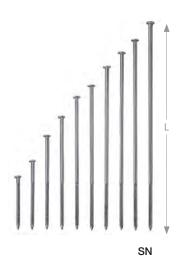
| Produktabme                  | ssungen        |     | Tabelle 1                                                       |                                  |  |
|------------------------------|----------------|-----|-----------------------------------------------------------------|----------------------------------|--|
| Art. Nr.                     | Abmessung [mm] |     | Charakteristische Werte<br>der Tragfähigkeit [kN] <sup>1)</sup> |                                  |  |
|                              | Ø              | L   | R <sub>ax,k</sub> 2)                                            | R <sub>lat,k</sub> <sup>2)</sup> |  |
| CNA3,1x40                    | 0.1            | 40  | 0,57                                                            | 1,41                             |  |
| CNA3,1x60                    | 3,1            | 60  | 0,95                                                            | 1,64                             |  |
| CNA4,0x35                    |                | 35  | 0,61                                                            | 1,66                             |  |
| CNA4,0x40                    |                |     |                                                                 |                                  |  |
| CNA4,0x40S 4)                |                | 40  | 0,74                                                            | 1,85                             |  |
| CNA4,0x40G 3) 5)             |                | 40  | 0,74                                                            | 1,00                             |  |
| CNA4,0x40PC34 6)             |                |     |                                                                 |                                  |  |
| CNA4,0x50                    |                |     |                                                                 |                                  |  |
| CNA4,0x50S 4)                | 4,0            | 50  | 0,98                                                            | 2,22                             |  |
| CNA4,0x50PC34 6)             |                |     |                                                                 |                                  |  |
| CNA4,0x60                    |                |     |                                                                 |                                  |  |
| CNA4,0x60S 4)                |                | 60  | 1,23                                                            | 2,36                             |  |
| CNA4,0x60PC34 6)             |                |     |                                                                 |                                  |  |
| CNA4,0x75                    |                | 75  | 1,45                                                            | 2,50                             |  |
| CNA4,0x100                   |                | 100 | 1,43                                                            | 2,48                             |  |
| CNA6,0x60                    |                | 60  | 1,84                                                            | 3,97                             |  |
| CNA6,0x80                    | 6,0            | 80  | 2,15                                                            | 4,47                             |  |
| CNA6,0x100                   |                | 100 | 2,15                                                            | 4,47                             |  |
| N3,75x30SH/1KG <sup>7)</sup> | 3,75           | 30  | VE ≈ 375                                                        | St. / Box                        |  |

Anwendungshinweis:

Um Kontaktkorrosion zu vermeiden, sollen Verbinder aus nichtrostendem Stahl nur mit Verbindungsmitteln aus einem gleichwertigen Stahl angeschlossen werden.

N3.75x30SH Nägel besitzen einen gedrehten Vierkantschaft und werden in Verbindung mit EWP Verbindern für Stegträger verwendet.




N3,75X30SH

| The later than the la |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Magazinierte CNA-PC Kammnägel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

- 1) Gilt für Holzfestigkeitsklasse C24, für andere Festigkeitsklassen siehe ETA-04/0013
- ax = Belastung auf Herausziehen; lat = Belastung auf Abscheren
- 3) Stückverzinkt mit ca. 50 µm Zinkschichtdicke
- <sup>4)</sup> Nichtrostender Stahl 1.4401
   <sup>5)</sup> Tragfähigkeit gemäß EN14592
   <sup>6)</sup> Magaziniert (34° Papierbindung)
- 7) Sherard-Verzinkung

# Sparrennägel - SN





SN Sparrennägel sind vornehmlich für das Anschließen von Sparren auf Pfetten/Fußschwellen vorgesehen bzw. überall dort, wo längere Nägel erforderlich sind.

SN Sparrennägel sind zur Identifizierung der Nagellänge mit einem Code auf dem Kopf versehen. So lassen sich die Nagellängen gemäß Längencode (siehe Tabelle 1) auch im eingeschlagenen Zustand feststellen.



#### Produktabmessungen

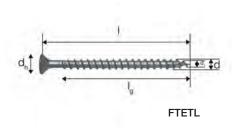
Tabelle 1

| Art. Nr.     | Abmessung [mm] |     | Längencode |                      | tische Werte<br>igkeit [kN] <sup>1)</sup> |
|--------------|----------------|-----|------------|----------------------|-------------------------------------------|
|              | Ø              | L   | В          | R <sub>ax,k</sub> 2) | R <sub>lat,k</sub> 2)                     |
| SN6,0x80-DE  |                | 80  | 8          | 1,84                 | 2,71                                      |
| SN6,0x110-DE |                | 110 | 11         |                      |                                           |
| SN6,0x150-DE |                | 150 | 15         |                      |                                           |
| SN6,0x180-DE |                | 180 | 18         |                      |                                           |
| SN6,0x210-DE |                | 210 | 21         |                      |                                           |
| SN6,0x230-DE | 6,0            | 230 | 23         | 0.07                 | 0.77                                      |
| SN6,0x260-DE |                | 260 | 26         | 2,07                 | 2,77                                      |
| SN6,0x280-DE |                | 280 | 28         |                      |                                           |
| SN6,0x300-DE |                | 300 | 30         |                      |                                           |
| SN6,0x330-DE |                | 330 | 33         |                      |                                           |
| SN6,0x350-DE |                | 350 | 35         |                      |                                           |

<sup>1)</sup> Gilt für Holzfestigkeitsklasse C24

#### Anwendungshinweis:

Zur Erreichung der vollen Tragfähigkeit muss der profilierte Teil der Sparrennägel im lastabtragenden Bauteil komplett eingebunden sein. Die Einschlagtiefe beträgt daher mindestens 50 mm für den SN6,0x80 und 80 mm für alle anderen SN- Sparrennägel. Die Dicke des anzuschließenden Holzes muss mindestens 30 mm


Das Vorbohren des anzuschließenden Holzes mit dem Nenndurchmesser der Nägel wird ausdrücklich empfohlen.



 $<sup>^{2)}</sup>$  ax = Belastung auf Herausziehen; lat = Belastung auf Abscheren

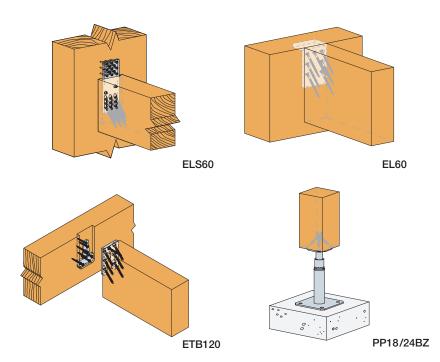


## Senkkopfschrauben – FTETL

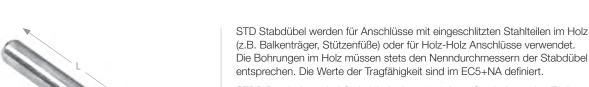


FTETL Senkkopfschrauben mit  $\varnothing$ 5 mm und Vollgewinde sind vorrangig zum Anschluss für die Hirnholzverbinder ETB sowie EL/ ELS Verbinder bestimmt. Der Kopfdurchmesser unter 10 mm erlaubt eine Verschraubung in den Senkbohrungen der Verbinder ohne Überstand, was für eine störungsfreie Montage der Verbinder unerlässlich ist.

Die Ø6 mm Ausführung ist für die Befestigung von Stützenfüßen mit Schrägverschraubung vorgesehen, wie beispielsweise die Typen PB3B; PB3C; PJPBG; PJPSG; PP80G; PPL80G und weitere.


Die Chrom- VI-freie Beschichtung mit TopCoat für einen erhöhten Korrosionswiderstand lässt eine sichere Anwendung in der NKL 2 zu.




Tabelle 1

| Art. Nr.    | Abmessung [mm] |    | Charakteristische Werte der Tragfähigkeit [kN] <sup>1)</sup> |                       |                               |                            |                            |
|-------------|----------------|----|--------------------------------------------------------------|-----------------------|-------------------------------|----------------------------|----------------------------|
|             | Ø              | L  | $\ell_{g}$                                                   | M <sub>y,k</sub> [Nm] | f <sub>ax,k,90°</sub> [N/mm²] | f <sub>head,k</sub> [Nmm²] | f <sub>tens,k</sub> [Nmm²] |
| FTETL5,0x70 | 5,0            | 70 | 61                                                           | 5,9                   | 14,0                          | 17,3                       | 7,9                        |
| FTETL5,0x80 | 5,0            | 80 | 61                                                           | 5,9                   | 14,0                          | 17,3                       | 7,9                        |
| FTETL6,0x60 | 6,0            | 60 | 53                                                           | 9,5                   | 12,0                          | 15,4                       | 11,0                       |

<sup>&</sup>lt;sup>1)</sup> Für die Zugtragfähigkeit ist die im Holz eingebundene Gewindelänge maßgebend.



# Stabdübel - STD / STDP



STDP Passbolzen sind Stabdübel mit zusätzlichem Gewinde an den Enden zur Sicherung außenliegender Stahl- oder Holzlaschen. Durch Unterlegscheiben und Muttern wird eine Klemmwirkung erzielt. Die Bohrungen im Holz müssen wie bei den Stabdübeln den Nenndurchmessern entsprechen. Die Werte der Tragfähigkeit entsprechen denen der Stabdübel, jedoch darf zusätzlich ein Seileffekt angesetzt werden. Bei Passbolzen sollten am Holz Unterlegscheiben mit Mindestabmessungen gemäß EN ISO 7094 (vorher DIN 440) verwendet werden.

Stahlsorten: S235 (Standard); S355 (Hochfest); Nichtrostender Stahl

**Stahlsorten:** S235 (Standard); S355 (Hochfest); Nichtrostender Stah Werkstoffnummer 1.4571 oder HCR 1.4529.

Korrosionsschutz: S235/S355: galvanisch verzinkt Fe/Zn12/A gemäß EN2081 oder stückverzinkt (feuerverzinkt) gemäß EN 1461 ca. 45 µm Zinkschichtdicke.







Diverse Größen



Typen







SIMPSON

Strong-Tie

STD

Produktabmessungen

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

Tabelle 1

STDP Passbolzen

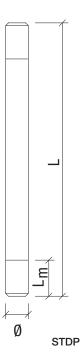
|                           |                | Tabolio 1 |  |
|---------------------------|----------------|-----------|--|
| Art. Nr.                  | Abmessung [mm] |           |  |
|                           | Ø              | L         |  |
| STD8x45-B                 |                | 45        |  |
| STD8x45G-B <sup>1)</sup>  |                | 45        |  |
| STD8x60-B                 |                | 60        |  |
| STD8x65-B                 |                | 65        |  |
| STD8x70-B                 |                | 70        |  |
| STD8x90-B                 |                | 90        |  |
| STD8x100-B                | 8              | 100       |  |
| STD8x100G-B 1)            | 0              | 100       |  |
| STD8x115-B                |                | 115       |  |
| STD8x120-B                |                | 120       |  |
| STD8x120G-B 1)            |                | 120       |  |
| STD8x140-B                |                | 140       |  |
| STD8x140G-B <sup>1)</sup> |                | 140       |  |
| STD8x160-B                |                | 160       |  |
| STD10x90-B                |                | 90        |  |
| STD10x100-B               | 10             | 100       |  |
| STD10x120-B               | 10             | 120       |  |
| STD10x140-B               |                | 140       |  |
| STD12x60-B                |                | 60        |  |
| STD12x65-B                | 12             | 65        |  |
| STD12x65G-B 1)            |                | 00        |  |

<sup>1)</sup> Stückverzinkt (feuerverzinkt)

#### Produktabmessungen

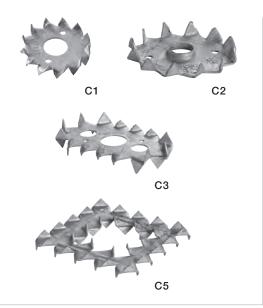
Tabelle 2

| TOduktabi                  | labelle 2      |     |  |
|----------------------------|----------------|-----|--|
| Art. Nr.                   | Abmessung [mm] |     |  |
|                            | Ø              | L   |  |
| STD12x80-B                 |                | 80  |  |
| STD12x80G-B 1)             |                | 80  |  |
| STD12x90-B                 |                | 90  |  |
| STD12x90G-B <sup>1)</sup>  |                | 90  |  |
| STD12x100-B                |                | 100 |  |
| STD12x100G-B1)             |                | 100 |  |
| STD12x110-B                | 12             | 110 |  |
| STD12x120-B                | 12             | 120 |  |
| STD12x120G-B 1)            |                | 120 |  |
| STD12x140-B                |                | 140 |  |
| STD12x140G-B <sup>1)</sup> |                | 140 |  |
| STD12x160-B                |                | 160 |  |
| STD12x180-B                |                | 180 |  |
| STD12x200-B                |                | 200 |  |
| STD16x120-B                |                | 120 |  |
| STD16x140-B                |                | 140 |  |
| STD16x160-B                | 16             | 160 |  |
| STD16x180-B                | 10             | 180 |  |
| STD16x200-B                |                | 200 |  |
| STD16x250-B                |                | 250 |  |
| STD20x200-B                | 20             | 200 |  |
| STD20x250-B                | 20             | 250 |  |


<sup>1)</sup> Stückverzinkt (feuerverzinkt)

#### Gewindelängen

Tabelle 3


| Gewindelängen und Abmessungen des STDP-Passbolzenzubehörs [mm] zur Ermittlung der Passbolzenlänge |     |     |      |      |     |      |      |  |
|---------------------------------------------------------------------------------------------------|-----|-----|------|------|-----|------|------|--|
| Durchmesser der STDP- Passbolzen                                                                  | 8   | 10  | 12   | 16   | 20  | 24   | 30   |  |
| Gewindelänge Lm der STDP-Passbolzen                                                               | 18  | 22  | 25   | 33   | 40  | 45   | 55   |  |
| Außendurchmesser der U-Scheiben gem. EN ISO7094 (DIN440)                                          | 28  | 34  | 44   | 56   | 72  | 85   | 105  |  |
| Dicke der U-Scheiben gem. EN ISO7094 (DIN440)                                                     | 3,0 | 3,0 | 4,0  | 5,0  | 6,0 | 6,0  | 6,0  |  |
| Außendurchmesser der U-Scheiben gem. DIN125                                                       | 16  | 20  | 24   | 30   | 37  | 44   | 56   |  |
| Dicke der U-Scheiben gem. DIN125                                                                  | 1,6 | 2,0 | 2,5  | 3,0  | 3,0 | 4,0  | 4,0  |  |
| Dicke der Muttern gem. EN ISO4032                                                                 | 6,8 | 8,4 | 10,8 | 14,8 | 18  | 21,5 | 25,6 |  |





# Scheibendübel – BULLDOG°





BULLDOG®-Dübel werden als ein- oder zweiseitige Scheibendübel mit Zähnen hergestellt. Zweiseitige BULLDOG®-Dübel werden ausschließlich für Holz an Holzanschlüsse eingesetzt, während die einseitigen BULLDOG®-Dübel auch für Verbindungen mit Stahlblechen oder an Beton verwendet werden. BULLDOG®-Dübel entsprechen der EN 912 "Dübel besonderer Bauart".

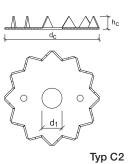
**Material:** HC340LA + stückverzinkt (feuerverzinkt)  $\geq$  45  $\mu$ m Zinkschichtdicke Verwendbar in Nutzungsklasse 1 + 2, bedingt verwendbar in NKL3

Verbindungsmittel: Bei einseitigen Scheibendübeln ist der Innendurchmesser passend zu den Bolzen M10-M24 zu wählen, ein Kontakt zwischen Dübel und Bolzen ist erforderlich. Bei zweiseitigen Scheibendübeln muss kein Kontakt zwischen Dübel und Bolzen bestehen.









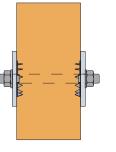




Tabelle 1

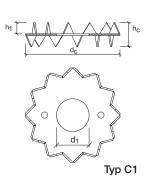
| Art. Nr.        | Ab             | omessung (m    | Charakteristische<br>Werte der<br>Tragfähigkeit [kN] <sup>1)</sup> |           |  |  |
|-----------------|----------------|----------------|--------------------------------------------------------------------|-----------|--|--|
|                 | d <sub>1</sub> | d <sub>c</sub> | h <sub>c</sub>                                                     | $R_{c,k}$ |  |  |
| C2-50M10G-B     | M10            |                | 6,6                                                                |           |  |  |
| C2-50M12G-B     | M12            | 50             |                                                                    | 6,4       |  |  |
| C2-50M16G-B     | M16            | 30             |                                                                    | 0,4       |  |  |
| C2-50M20G-B     | M20            |                |                                                                    |           |  |  |
| C2-62M12G-B     | M12            |                | 8,7                                                                | 8,8       |  |  |
| C2-62M16G-B     | M16            | 62             |                                                                    |           |  |  |
| C2-62M20G-B     | M20            |                |                                                                    |           |  |  |
| C2-75M12G-B     | M12            |                | 10,4                                                               |           |  |  |
| C2-75M16G-B     | M16            | 75             |                                                                    | 11.7      |  |  |
| C2-75M20G-B     | M20            | 75             |                                                                    | 11,7      |  |  |
| C2-75M24G-B     | M24            |                |                                                                    |           |  |  |
| C2-95M16G-B     | M16            |                | 12,7                                                               | 16,7      |  |  |
| C2-95M20G-B     | M20            | 95             |                                                                    |           |  |  |
| C2-95M24G-B     | M24            |                |                                                                    |           |  |  |
| C2-117M16G-B    | M16            |                |                                                                    |           |  |  |
| C2-117M20G-B    | M20            | 117            | 16,0                                                               | 22,8      |  |  |
| C2-117M24G-B    | M24            |                |                                                                    |           |  |  |
| C4-73/130M20G-B | M20            | 73 x 130       | 14.0                                                               | 17.0      |  |  |
| C4-73/130M24G-B | M24            | 73 X 130       | 14,8                                                               | 17,3      |  |  |

<sup>1)</sup> Die Tabellenwerte gelten für einen Dübel ohne Bolzen.








SIMPSON

Strong-Tie

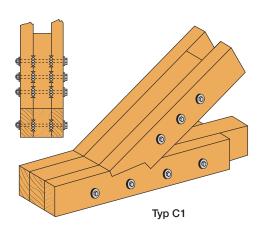
#### Scheibendübel – BULLDOG°

#### Produktabmessungen

| Art. Nr.              | Abmessung [mm] |                |                |                | Charakteristische<br>Werte der<br>Tragfähigkeit [kN] <sup>1)</sup> |  |  |
|-----------------------|----------------|----------------|----------------|----------------|--------------------------------------------------------------------|--|--|
|                       | d <sub>1</sub> | d <sub>c</sub> | h <sub>c</sub> | h <sub>1</sub> | $R_{c,k}$                                                          |  |  |
| C1-50-B <sup>2)</sup> | 17             | 50             | 13,0           | 6,0            | 6,4                                                                |  |  |
| C1-62-B <sup>2)</sup> | 21             | 62             | 16,0           | 7,4            | 8,8                                                                |  |  |
| C1-75-B <sup>2)</sup> | 26             | 75             | 19,5           | 9,1            | 11,7                                                               |  |  |
| C1-50G-B              | 17             | 50             | 13,0           | 6,0            | 6,4                                                                |  |  |
| C1-62G-B              | 21             | 62             | 16,0           | 7,4            | 8,8                                                                |  |  |
| C1-75G-B              | 26             | 72             | 19,5           | 9,0            | 11,7                                                               |  |  |
| C1-95G-B              | 33             | 95             | 24,0           | 11,3           | 16,7                                                               |  |  |
| C1-117G-B             | 48             | 117            | 30,0           | 14,3           | 22,8                                                               |  |  |
| C1-140G-B             | 60             | 140            | 31,0           | 14,7           | 29,8                                                               |  |  |
| C1-165G-B             | 70             | 165            | 15,6           | 15,6           | 38,2                                                               |  |  |
| C3-73/130G-B          | 26             | 70 x 130       | 28,0           | 13,3           | 17,2                                                               |  |  |
| C5-100G-B             | 40             | 100            | 15,0           | 7,3            | 18,0                                                               |  |  |
| C5-130G-B             | 52             | 130            | 20,0           | 9,3            | 26,7                                                               |  |  |



#### Anwendungshinweis:


Die Bemessungswerte einer Verbindungseinheit für Scheibendübel mit Zähnen oder Dornen errechnen sich aus der Tragfähigkeit des Dübels zuzüglich der Tragfähigkeit des Bolzens.

$$R_{i,\alpha,d} = R_{c,d} + R_{b,\alpha,d}$$

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.

mit  $R_{c,d}$  = Bemessungswerte der Dübel

und  ${\rm R_{b,\alpha,d}}$  = Bemessungswert des Bolzen unter dem Winkel  $\alpha$  zur Faserrichtung. Die Bohrdurchmesser für die Bolzen im Holz dürfen maximal 1 mm größer als die Nenndurchmesser der Bolzen sein. Die Tragfähigkeiten, Mindestholzabmessungen und Abstandsregeln der Verbindungen sind in EC5 + NA geregelt.

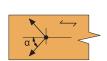


#### Mindestabstände für Bulldogdübel

$$a_1 = (1.2 + 0.3 \times \cos \alpha) \times d_c$$

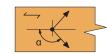
$$a_2 = 1.2 \times d_0$$

$$a_{3,t} = 1.5 \times d_c$$

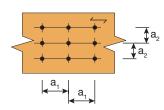

 $a_{3,c} = (0.9 + 0.6 \text{ x sin}\alpha) \text{ x d}_c \text{ für Winkel } 90^\circ \le \alpha < 150^\circ$ 

$$a_{3,c} = 1.2 \text{ x d}_c \text{ für Winkel } 150^\circ \le \alpha < 210^\circ$$

 $a_{_{3,c}} = (0.9 + 0.6 \text{ x sin}\alpha) \text{ x d}_{_{c}} \text{ für Winkel } 210^{\circ} \le \alpha < 270^{\circ}$ 

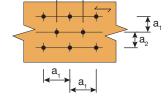

$$a_{4t} = (0.6 + 0.2 \times \sin \alpha) \times d_{c}$$

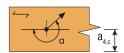
$$a_{4.c} = 0.6 \times d_{c}$$






 $-90^{\circ} \le \alpha \le 90^{\circ}$ beanspruchtes Hirnholzende





 $-90^{\circ} \le \alpha \le 270^{\circ}$ unbeanspruchtes Hirnholzende





 $0^{\circ} \le \alpha \le 180^{\circ}$ beanspruchter Rand





 $180^{\circ} \le \alpha \le 360^{\circ}$ unbeanspruchter Rand

 $<sup>^{1)}</sup>$  Die Tabellenwerte gelten für einen Dübel ohne Bolzen.  $^{2)}$  Material: DX51D + Z275  $\approx 20~\mu m$  Zinkschichtdicke

#### Scheibendübel - C10 / C11





C10



C11

Scheibendübel mit Dornen des Typs C10 sind zweiseitige Dübel, die aus einem Scheibenring mit Dornen auf beiden Seiten bestehen.

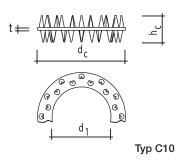
Scheibendübel mit Dornen des Typs C11 sind einseitige Dübel, die aus einem Scheibenring mit Dornen auf einer Scheibenseite bestehen.

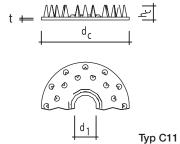
Material: Temperguss EN-GJMB-350-10. Korrosionsschutz: galvanisch verzinkt FE/Zn12/C

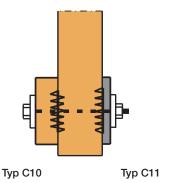
Tahalla 1

Verbindungsmittel: Bei einseitigen Scheibendübeln ist der Innendurchmesser passend zu den Bolzen M12 bis M24 zu wählen, ein Kontakt zwischen Dübel und Bolzen ist erforderlich. Bei zweiseitigen Scheibendübeln muss kein Kontakt zwischen Dübel und Bolzen bestehen. Die Bohrdurchmesser für die Bolzen im Holz dürfen maximal 1 mm größer als die Nenndurchmesser der Bolzen sein. Die Tragfähigkeiten, Mindestabmessungen und Abstandsregeln der Verbindungen sind in EC5 + NA geregelt.




#### Produktabmessungen


| Tabelle      |                |                |                |     |                                                   |  |  |
|--------------|----------------|----------------|----------------|-----|---------------------------------------------------|--|--|
| Art. Nr.     | Abmessung [mm] |                |                |     | Charakteristische Werte<br>der Tragfähigkeit [kN] |  |  |
|              | d <sub>1</sub> | d <sub>c</sub> | h <sub>c</sub> | t   | $R_{c,k}$                                         |  |  |
| C10-50-B     | 30,5           | 50             | 27             | 3,0 | 8,8                                               |  |  |
| C10-65-B     | 35,5           | 65             | 27             | 3,0 | 13,1                                              |  |  |
| C10-80-B     | 49,5           | 80             | 27             | 3,0 | 17,9                                              |  |  |
| C10-95-B     | 65,5           | 95             | 27             | 3,0 | 23,1                                              |  |  |
| C10-115-B    | 85,5           | 115            | 27             | 3,0 | 30,8                                              |  |  |
| C11-50M12-B  | M12            | 50             | 15             | 3,0 | 8,8                                               |  |  |
| C11-65M16-B  | M16            | 65             | 15             | 3,0 | 13,1                                              |  |  |
| C11-80M20-B  | M20            | 80             | 15             | 3,0 | 17,9                                              |  |  |
| C11-95M24-B  | M24            | 95             | 15             | 3,0 | 23,1                                              |  |  |
| C11-115M24-B | M24            | 115            | 15             | 3,0 | 30,8                                              |  |  |


- d, = Innendurchmesser
- d<sub>c</sub> = Dübelaußendurchmesser
- h = Höhe
- = Plattendicke

#### Anwendungshinweis:

Scheibendübel mit Dornen sind Einpressdübel. Das Einlassen der 3 mm dicken Grundplatte wird empfohlen, ist jedoch nicht zwingend erforderlich. Die maximale Tragfähigkeit der Dübel wird bei vollständig eingepressten Dornen erreicht. Weitere Details und Angaben zur Bemessung sind in der EN912 und im EC5 + NA angegeben.







# Ringdübel / Scheibendübel - A1 / B1







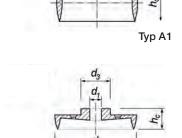
В1

Typ A1: Ringdübel des Typs A1 sind Dübel besonderer Bauart als geschlossene Ringe mit einer linsenförmigen Querschnittsfläche in verschiedenen Durchmessern.

Typ B1: Scheibendübel des Typs B1 sind Dübel besonderer Bauart, die aus einer runden Scheibe mit einem umlaufenden Flansch und einer auf der gegenüberliegenden Seite zylindrischen Nabe mit einem Bolzenloch in der Scheibenmitte bestehen. Die Kraftübertragung zum Stahlteil erfolgt über diese Nabe und einer dazu passenden Bohrung im Stahlteil.

Material: Aluminium-Gusslegierung EN AC-AlSi9Cu3 (Fe) nach DIN EN1706:2010

Verbindungsmittel: Als Verbindungsmittel werden Bolzen M12 oder M16 verwendet.






#### Produktabmessungen

Tabelle 1

| Art. Nr.    | Abmessung [mm] |                |                |                |
|-------------|----------------|----------------|----------------|----------------|
|             | d <sub>1</sub> | d <sub>c</sub> | h <sub>c</sub> | d <sub>3</sub> |
| A1-65-B     | -              | 65             | 30             | -              |
| A1-80-B     | -              | 80             | 30             | -              |
| A1-95-B     | _              | 95             | 30             | _              |
| A1-126-B    | _              | 126            | 30             | _              |
| A1-128-B    | _              | 128            | 45             | _              |
| A1-160-B    | -              | 160            | 45             | -              |
| A1-190-B    | -              | 190            | 45             | -              |
| B1-65M12-B  | M12            | 65             | 23             | 22,5           |
| B1-80M12-B  | M12            | 80             | 23             | 25,5           |
| B1-95M12-B  | M12            | 95             | 23             | 33,5           |
| B1-128M12-B | M12            | 128            | 32,5           | 45             |
| B1-160M16-B | M16            | 160            | 34,5           | 50             |



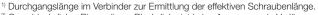
Typ B1

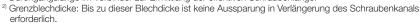
#### Anwendungshinweis:

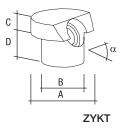
Ringdübel und Scheibendübel werden in dafür passgenau vorgefräste Ringnuten eingelegt. Eine Bezugsquelle für das benötigte Fräswerkzeug kann auf Anfrage genannt werden.

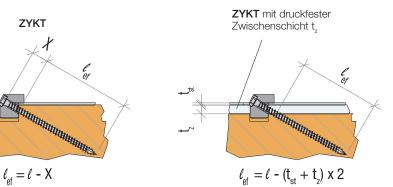
C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.



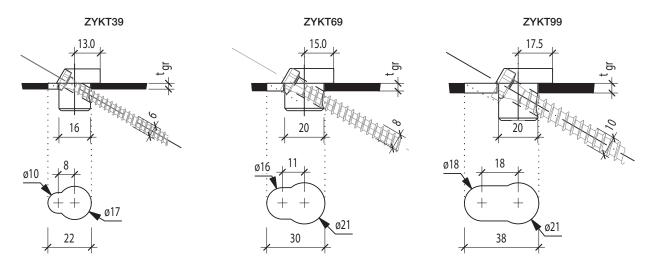

Mit Schrägverschraubungen können im Holzbau sehr effiziente Scherverbindungen hergestellt werden. Dies kann einerseits mittels schräger Bohrungen und Senkungen erfolgen, hierfür sind jedoch sehr dicke, statisch weit überbemessene Bleche notwendig, die teuer und in der Herstellung aufwändig zu verarbeiten sind. Mit dem ZYKLOP™-Verbinder lassen sich die Blechdicken auf das statisch notwendige Maß verringern und zum Anschluss werden nur einfache rechtwinklige Bohrungen benötigt. Der ZYKT ist für eine Schraubenneigung von 30° ausgelegt. Der Anschluss kann auf der Längs- oder Stirnseite des Holzes erfolgen. Die Besonderheit des ZYKT ist, dass die Länge des unteren Absatzes (Maß "D" in Tab.1) wesentlich größer ist als die Blechdicke. Für diesen Absatz wird eine Bohrung im anschließenden Bauteil benötigt. Die Vorteile sind eine geringere Aufbauhöhe, Entfallen des Einmessens bei der Montage, keine zusätzlichen Verbindungsmittel zur Fixierung des Stahlblechs und vor Allem werden keine Zugkräfte, bedingt durch das Anziehen der Schrauben unter Neigung, in das anzuschließende Blech eingebracht.


Tabelle 1





#### Produktabmessungen

Art. Nr. Abmessung [mm] SST Schraube [mm] X 1) Α В С D Gewindelänge Neigung [°] ØxL ZYKT39 25 30 14 6 x 200 192 16 7.4 14 3 ZYKT69 30 20 7,5 14 30 17 8 x 300 290 ZYKT99 35 20 7,5 19 30 16 10 x 400 388 5










#### Erforderliche Bohrungen

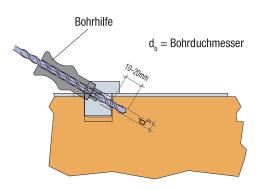


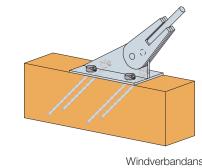
## ZYKLOP™-Verbinder – **ZUBEHÖR**



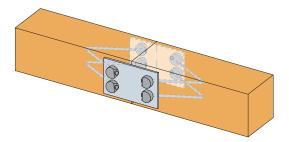
#### Anwendungshinweis:

Um einen exakten Einbau der ZYKLOP™ zu gewährleisten, sollte das Holz für die Schraube mittels der Bohrhilfe BSZYK mindestens 10-20 mm tief angebohrt werden. Die zum ZYKT passende Bohrerführung wird auf den montagebereiten ZYKLOP™ aufgesetzt und das Holz mit den beiliegenden langen Bohrern durch das Zentrumsloch hindurch angebohrt.





#### Bohrhilfeset

C-DE-2023 @2023 SIMPSON STRONG-TIE COMPANY INC.


| Art. Nr. | Inhalt des Bohrhilfeset BSZYK <sup>1)</sup> |                    |                       |
|----------|---------------------------------------------|--------------------|-----------------------|
|          | Für Schrauben mit Ø [mm]                    | Zur Verwendung mit | Abmessung Bohrer [mm] |
| BSZYK6   | 6                                           | ZYKT39             | Ø3,5 L≥90             |
| BSZYK8   | 8                                           | ZYKT69             | Ø5,0 L≥105            |
| BSZYK10  | 10                                          | ZYKT99             | Ø6,0 L≥105            |







Windverbandanschluss mit ZYKT



Beidseitige Zuglaschenstoß mit **ZYKT** 

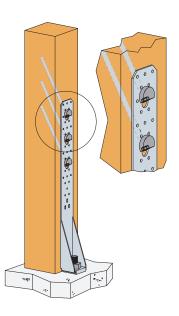
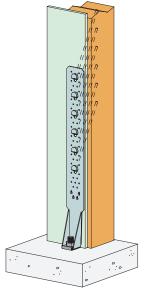




Tabelle 2

HTT22E Zuganker mit ZYKT



HTT31 Zuganker mit ZYKT durch Zwischenschicht

#### Unterlegscheiben – **USxx**





US50/50/8



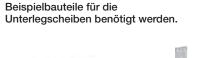


US40/40/10

US40/50/10

Tabelle 1

Unterlegscheiben in verschiedenen Größen. Passend für diverse Simpson Strong-Tie® Produkte wie Winkelverbinder und Zuganker.


Material: Stahlsorte: S235JR gemäß EN 10025. Korrosionsschutz: nach Bearbeitung rundumfeuerverzinkt; Zinkschichtdicke ca. 55  $\mu m$  gemäß EN ISO





#### Produktabmessungen

| Art. Nr.      | Abmessung [mm] |    |    | Löcher    |
|---------------|----------------|----|----|-----------|
|               | Α              | В  | С  | Ø         |
| US40/40/10G   | 40             | 40 | 10 | 13,5      |
| US40/50/10G-B | 40             | 50 | 10 | 13,5 x 25 |
| US50/50/8G    | 50             | 50 | 8  | 18        |











AE116

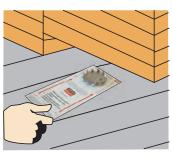
AH16050 AH19050 AH29050

## Ladungssicherung – KOLLIBRODD®



KOLLIBRODD® werden zur Ladungssicherung zwischen Paletten und Holz- oder Holzwerkstoffböden der Transportfahrzeuge gelegt. Die Verwendung erfolgt zusammen mit einer Sicherung der Güter durch Spanngurte. Bei Verwendung von harten Hölzern ist die Einpressfähigkeit zu prüfen. Die KOLLIBRODD® Ladungssicherung in Skinverpackungen verbleiben bei Benutzung zur einfacheren Handhabung, Kontrolle und Wiederauffinden in ihrer Verpackung. Die eckige Ausführung (50x65) kann für Güter auf Paletten mit Umreifungsband verwendet werden.

Material: Vorverzinkter Stahl S250GD.


Zinkschichtdicke = 20 µm.



#### Produktabmessungen

| _  |     |    |  |
|----|-----|----|--|
| Ιa | bel | le |  |

| Art. Nr. | Bezeichnung / Größe                       |
|----------|-------------------------------------------|
| KOLC1    | Ladungssicherung Ø50 auf Blister 81x169   |
| KOLC2    | Ladungssicherung Ø62 auf Blister 81x169   |
| KOLC3    | Ladungssicherung Ø75 auf Blister 121x169  |
| KOLC4    | Ladungssicherung Ø95 auf Blister 115x246  |
| KOLC8    | Ladungssicherung 48x65 auf Blister 81x169 |
| KOLV1    | Ladungssicherung Ø50 lose                 |



**KOLC** 

KOLV1











| Kapitel                         | Seite | BETA Zuganker11                                    | 276   |
|---------------------------------|-------|----------------------------------------------------|-------|
| <b>66</b> Winkel L und T-form12 | 298   | BF Clips4                                          | 165   |
|                                 |       | BH54 Blendhülse7                                   | 216   |
| A Kapitel                       | Seite | BNF Bandanschlüsse4                                | 168   |
| AA Winkelverbinder1             | 22    | BNG Bandanschlüsse4                                | 168   |
| A1 Ringdübel13                  | 325   | BNK Bandanschlüsse4                                | 168   |
| AB Schubwinkel1                 | 28    | BNKK Bandanschlüsse4                               | 170   |
| AB105 Winkelverbinder1          | 24    | BNSP Spanngeräte4                                  | 166   |
| AB255HD Winkelverbinder1        | 52    | BNV Schubwinkel1                                   | 28    |
| AB255SSH Winkelverbinder1       | 54    | BNW Windverbandanschlüsse4                         | 174   |
| AB45C Winkelverbinder1          | 72    | BNWA Windverbandanschlüsse4                        | 176   |
| AB55365 Winkelverbinder1        | 23    | BNWM Windverbandanschlüsse4                        | 176   |
| AB70 Winkelverbinder1           | 24    | BPST Spanngeräte4                                  | 166   |
| AB90 Winkelverbinder1           | 24    | BSD Balkenschuhe2                                  | 100   |
| ABAI105 Schallschutzwinkel      | 32    | BSDI Balkenschuhe2                                 | 100   |
| ABB Winkelverbinder1            | 36    | BSDxxS Balkenschuhe rostfrei10                     | 263   |
| ABBxxs Winkelverbinder rostfrei | 260   | BSIL Balkenschuhe2                                 | 95    |
| ABD Winkelverbinder1            | 30    | BSIN Balkenschuhe2                                 | 92    |
| ABL Betonwinkel1                | 37    | BSNN Balkenschuhe2                                 | 88    |
| ABR Winkelverbinder1            | 38    | BSS Balkenschuhe2                                  | 98    |
| ABR170 Winkelverbinder          | 44    | BT Balkenträger2                                   | 116   |
| ABR220 Winkelverbinder          | 44    | BT4 Balkenträger2                                  | 116   |
| ABR255 Winkelverbinder          | 48    | BT4xxS Balkenträger rostfrei10                     |       |
| ABR255SO Winkelverbinder        | 50    | BTALU Balkenträger2                                | 116   |
| ABRL Winkelverbinder1           | 38    | BTC Balkenträger2                                  | 126   |
| ABRxxS Winkelverbinder rostfrei | 259   | BTCxxS Balkenträger rostfrei                       |       |
| ABS Betonwinkel                 | 37    | BTN Balkenträger2                                  |       |
| ABxxS Winkelverbinder rostfrei  | 258   | BTNxxS Balkenträger rostfrei                       |       |
| AC35350 Winkelverbinder1        | 23    | BTxxS Balkenträger rostfrei10                      |       |
| ACR Winkelverbinder1            | 38    | BULLDOG® Scheibendübel13                           |       |
| ACW155 Winkelverbinder1         | 56    |                                                    |       |
| ACxxS Winkelverbinder rostfrei  | 260   | C Kapite                                           | Seite |
| ADR Winkelverbinder1            | 58    | C10 GEKA zweiseitige Scheibendübel mit Dornen13    | 324   |
| AE Winkelverbinder1             | 60    | C11 GEKA einseitige Scheibendübel mit Dornen       |       |
| AF90265 Winkelverbinder1        | 23    | C1xxS Bulldog zweiseitige Scheibendübel rostfrei   |       |
| AG Winkelverbinder1             | 64    | C2KS Maueranschlussschienen                        |       |
| AH Zuganker11                   | 274   | C2xxS Bulldog® einseitige Scheibendübel rostfrei10 | 268   |
| AJ Winkelverbinder1             | 63    | CF-R Konsolwinkel12                                |       |
| AKR Winkelverbinder             | 66    | CMR Stützenfüße7                                   | 214   |
| AKRxxS Winkelverbinder rostfrei | 261   | CMS Stützenfüße7                                   | 215   |
| ANP Winkelverbinder             | 70    | CNA Kammnägel13                                    | 318   |
| ANPS Winkelverbinder            | 71    | CNAxxS Kammnägel rostfrei10                        | 269   |
| ANPxxS Winkelverbinder rostfrei | 261   | CPB40 Stützenfüße                                  |       |
| <b>APB100/150Z</b> Stützenfüße  | 213   | CPS40 Stützenfüße7                                 | 217   |
| AT Winkelverbinder1             | 58    | CSA Verbinderschrauben                             | 317   |
| ATFN Hirnholzverbinder2         | 136   | CSAxxS Verbinderschrauben rostfrei10               | 269   |
| B Kapitel                       | Seite | D Kapitel                                          | Seite |
| B1 Scheibendübel                | 325   | Design Series12                                    | 292   |
| BAN Lochbänder4                 | 157   | DLV Dachlattenverbinder3                           |       |
| BAN Windrispenband4             |       |                                                    |       |
| BAN Windrispenband rostfrei     |       | E Kapite                                           | Seite |
| BANA2 Bandabroller              |       | E20/3 Winkelverbinder1                             | 46    |
| BANSTR Spanngeräte              |       | E9/2,5 Winkelverbinder1                            | 46    |
| BANSTR4 Spanngeräte             |       | EBC Winkelverbinder1                               |       |
| BANW Lochband rostfrei          |       | EBR Rundholzverbinder                              | 299   |
| BANW Lochbänder4                |       | EBR Winkelverbinder rostfrei                       |       |
|                                 |       |                                                    |       |



| EFIXR Montagewinkel              | 297                                                                                            |
|----------------------------------|------------------------------------------------------------------------------------------------|
| EL Hirnholzverbinder2            | 134                                                                                            |
| ELS Hirnholzverbinder2           | 134                                                                                            |
| ETB Hirnholzverbinder2           | 132                                                                                            |
| F Kapitel                        | Saita                                                                                          |
| FBAR Lochbänder4                 | 158                                                                                            |
| FBAR Lochbänder 12               | 296                                                                                            |
| FLV Flachverbinder               | 298                                                                                            |
| FLVW Flachverbinderwinkel        | 297                                                                                            |
| FTETL Senkkopfschrauben          | 320                                                                                            |
|                                  |                                                                                                |
| G Kapitel                        |                                                                                                |
| GBE Balkenschuhe                 | 110                                                                                            |
| GBI Balkenschuhe                 | 110                                                                                            |
| GERB Gerberverbinder             | 200                                                                                            |
| GERG Gerberverbinder             | 202                                                                                            |
| GERW Gerberverbinder             | 204                                                                                            |
| GERWxxS Gerberverbinder rostfrei | 267                                                                                            |
| GLE Balkenschuhe                 | 104                                                                                            |
|                                  | 104                                                                                            |
| GSE Balkenschuhe                 | 106<br>106                                                                                     |
| GSI Balkenschuhe2                | 100                                                                                            |
| H Kapitel                        | Seite                                                                                          |
| HD Zuganker11                    | 278                                                                                            |
| HD2P Zuganker11                  | 280                                                                                            |
| HE Profilanker8                  | 246                                                                                            |
|                                  |                                                                                                |
| l Kanitel                        | Seite                                                                                          |
| Kapitel  ICST Flementverhinder   |                                                                                                |
| ICST Elementverbinder2           | 138                                                                                            |
|                                  | 138                                                                                            |
| ICST Elementverbinder            | 138<br>114<br><b>Seite</b>                                                                     |
| ICST Elementverbinder            | 138<br>114<br><b>Seite</b>                                                                     |
| ICST Elementverbinder            | 138<br>114<br><b>Seite</b><br>303                                                              |
| ICST Elementverbinder            | 138<br>114<br><b>Seite</b><br>303<br><b>Seite</b>                                              |
| ICST Elementverbinder            | 138<br>114<br><b>Seite</b><br>303                                                              |
| CST Elementverbinder             | 138<br>114<br>Seite<br>303<br>Seite<br>310                                                     |
| CST Elementverbinder             | 138<br>114<br>Seite<br>303<br>Seite<br>310<br>74                                               |
| CST Elementverbinder             | 138<br>114<br>Seite<br>303<br>Seite<br>310<br>74<br>328<br>328                                 |
| CST Elementverbinder             | 138<br>114<br>Seite<br>303<br>Seite<br>310<br>74<br>328<br>328                                 |
| CST Elementverbinder             | 138<br>114<br>Seite<br>303<br>Seite<br>310<br>74<br>328<br>328<br>Seite<br>112                 |
| CST Elementverbinder             | 138<br>114<br>Seite<br>303<br>Seite<br>310<br>74<br>328<br>328<br>Seite                        |
| CST Elementverbinder             | 138<br>114<br>Seite<br>303<br>Seite<br>310<br>74<br>328<br>328<br>Seite<br>112<br>273          |
| CST Elementverbinder             | 138<br>114<br>Seite<br>303<br>Seite<br>310<br>74<br>328<br>328<br>Seite<br>112<br>273<br>Seite |
| CST Elementverbinder             | 138<br>114<br>Seite<br>303<br>Seite<br>310<br>74<br>328<br>328<br>Seite<br>112<br>273          |
| ICST Elementverbinder            | 138 114  Seite 303  Seite 310 74 328 328  Seite 112 273  Seite 76 301                          |
| CST Elementverbinder             | 138 114  Seite 303  Seite 310 74 328 328  Seite 112 273  Seite 76 301  Seite                   |
| CST Elementverbinder             | 138 114  Seite 303  Seite 310 74 328 328  Seite 112 273  Seite 76 301  Seite 182               |
| ICST Elementverbinder            | 138 114  Seite 303  Seite 310 74 328 328  Seite 112 273  Seite 76 301  Seite 182 184           |
| CST Elementverbinder             | 138 114  Seite 303  Seite 310 74 328 328  Seite 112 273  Seite 76 301  Seite 182               |
| ICST Elementverbinder            | 138 114  Seite 303  Seite 310 74 328 328  Seite 112 273  Seite 76 301  Seite 182 184 267       |

PB3B Stützenfüße......7 218

| PB3C Stützenfüße7             | 219   |
|-------------------------------|-------|
| PBE60G Pfostenhalter          | 306   |
| PBL4540 Pfostenhalter         | 306   |
| PBR24/50G Pfostenhalter12     | 304   |
| PCN Pfostenhalter12           | 303   |
| PCNS40G Pfostenhalter12       | 304   |
| PCNS40G Pfostenhalter12       | 304   |
| PCR24/50G Pfostenhalter12     | 304   |
| PDL Pfostenhalter12           | 307   |
| PDS60G Pfostenhalter          | 305   |
| PFE Pfettenanker3             | 148   |
| PFU Pfettenanker3             | 150   |
| PGS24 Stützenfüße7            | 220   |
| PGS24 Stützenfüße7            | 221   |
| PIG Stützenfüße7              | 222   |
| PILG Stützenfüße7             | 223   |
| PIS70G Stützenfüße7           | 224   |
| PISBMAXIG Stützenfüße7        | 224   |
| PISBxxG Stützenfüße7          | 224   |
| PISMAXIG Stützenfüße7         | 224   |
| PJIBG Stützenfüße7            | 228   |
| PJISG Stützenfüße7            | 228   |
| PJPBG Stützenfüße7            | 226   |
| PJPSG Stützenfüße7            | 226   |
| PLBxxG Stützenfüße7           | 230   |
| PLSxxG Stützenfüße7           | 230   |
| PLxxG Stützenfüße7            | 229   |
| PP18/24xy Stützenfüße7        | 231   |
| PP80G Stützenfüße7            | 234   |
| PPA Stützenfüße               | 236   |
| PPBxxG Stützenfüße            | 237   |
| PPCxx/yyBZ Stützenfüße7       | 232   |
| PPCxx/yyBZ Stützenfüße7       | 233   |
| PPDxxG Stützenfüße            | 238   |
| PPDxxG Stützenfüße            | 239   |
| PPH Pfostenanker12            | 302   |
| PPHB Pfostenanker             | 302   |
| PPJET Bodenhülsen             | 302   |
| PPL80G Stützenfüße            | 235   |
| PPRC Stützenfüße              | 236   |
| PPS80G Stützenfüße            | 237   |
| PPU Pfostenhalter             | 307   |
| PPWSxxZ Gefalteter Stützenfuß | 306   |
| PROFA Profilanker             | 247   |
| PT30G Pfostenhalter12         | 307   |
| PTB48G Pfostenhalter 12       | 308   |
| PU Stützenfüße                | 240   |
| PUA Stützenfüße               | 241   |
| PUA/B Stützenfüße             | 241   |
| PVDBxxG Stützenfüße           | 242   |
| PVDxxG Stützenfüße            | 242   |
| PVIBG Stützenfüße             | 242   |
| PVIG Stützenfüße              | 242   |
|                               | - '-  |
| R Kapitel                     | Seite |



| S                                | Kapitel | Seite |
|----------------------------------|---------|-------|
| SBG Balkenschuhe                 | 2       | 96    |
| SC2P 2-teiliger Schubwinkel      |         | 27    |
| SCMF35/B Geschossverbinder       | 11      | 284   |
| SCMF55/B Geschossverbinder       | 11      | 286   |
| SDE Balkenschuhe                 | 2       | 94    |
| SF Sparrenfußverbinder           | 5       | 192   |
| SH Sparrenfußverbinder           | 5       | 192   |
| SHB Sparrenhalter                | 5       | 194   |
| SHH Sparrenhalter                | 5       | 194   |
| SIT Schalldämmlager              | 1       | 34    |
| SITW Schallschutz                | 1       | 35    |
| SN Sparrennägel                  | 13      | 319   |
| SPF Sparrenpfettenanker          | 3       | 146   |
| SPF Sparrenpfettenanker rostfrei | 10      | 263   |
| STD Stabdübel                    | 13      | 321   |
| STDP Stabdübel                   | 13      | 321   |
| STDPxxS Stabdübel rostfrei       | 10      | 269   |
| STDvvS Stahdühal rostfrai        | 10      | 260   |

| T Kapitel                        | Seite      |
|----------------------------------|------------|
| TA Winkelverbinder1              | 73         |
| TALU3000 T-Profile Alu2          | 129        |
| TOL Firstlattenhalter3           | 143        |
| TU Balkenträger2                 | 130        |
| TU/S Balkenträger2               | 130        |
|                                  |            |
|                                  |            |
| U Kapitel                        | Seite      |
| U Kapitel UNI Universalverbinder |            |
|                                  | 144        |
| UNI Universalverbinder3          | 144        |
| UNI Universalverbinder3          | 144<br>328 |

# SIMPSON **Strong-Tie**

### Inhaltsverzeichnis Produkte

| Α | Produkte Kapitel APPEL Ringdübel A1 (Pingdübel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Seite<br>325                                                                              |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|   | A1 (Ringdübel)       13         B1 (Scheibendübel)       13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 325                                                                                       |
| В | Balkenschuhe         BSD Balkenschuhe       2         BSDI Balkenschuhe       2         BSDxxS Balkenschuhe rostfrei       10         BSDxxS Balkenschuhe rostfrei       10         BSIL Balkenschuhe       2         BSIN Balkenschuhe       2         BSNN Balkenschuhe       2         BSS Balkenschuhe       2         GBE Balkenschuhe       2         GBI Balkenschuhe       2         GLE Balkenschuhe       2         GSE Balkenschuhe       2         GSI Balkenschuhe       2         GSI Balkenschuhe       2         SBG Balkenschuhe       2         SBG Balkenschuhe       2         SDE Balkenschuhe       2         SDE Balkenschuhe       2 | 100<br>100<br>263<br>263<br>95<br>92<br>88<br>98<br>110<br>110<br>104<br>106<br>106<br>96 |
|   | Balkenträger       2         BT 4 Balkenträger       2         BT4xxS Balkenträger rostfrei       10         BTALU Balkenträger       2         BTC Balkenträger       2         BTCxxS Balkenträger rostfrei       10         BTN Balkenträger       2         BTNxxS Balkenträger rostfrei       10         BTxxS Balkenträger rostfrei       10         TU Balkenträger       2         TU/S Balkenträger       2                                                                                                                                                                                                                                         | 116<br>116<br>264<br>116<br>126<br>264<br>116<br>264<br>264<br>130<br>130                 |
|   | Bandabroller 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 159                                                                                       |
|   | Bandanschlüsse         4           BNF Bandanschlüsse         4           BNG Bandanschlüsse         4           BNK Bandanschlüsse         4           BNKK Bandanschlüsse         4           BNW Windverbandanschlüsse         4           BNWA Windverbandanschlüsse         4           BNWM Windverbandanschlüsse         4           BNWM Windverbandanschlüsse         4                                                                                                                                                                                                                                                                             | 168<br>168<br>168<br>170<br>174<br>176                                                    |
|   | Betonanker BETA Zuganker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 276                                                                                       |
|   | Betonwinkel 1 ABS Betonwinkel 1 Blendhülse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37<br>37                                                                                  |
|   | BH54 Blendhülse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 216                                                                                       |
|   | PPJET Bodenhülsen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 302                                                                                       |
|   | PUA/B Stützenfüße                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 241                                                                                       |
|   | Bohr-, Fräs- und Montageschablonen         2           BTBS12 Bohrschablone         2           BTBS40 Bohrschablone         7           BTBS8 Bohrschablone         2           BSZYK Bohrhilfe         13           ETTP Fräs- und Montageschablone aus HOLZ         2           FRATF Frässchablone aus HOLZ         2           MOATF Montageschablone aus HOLZ         2           MOET Fräs- und Montageschablone aus ALU         2           MOPB3 Montagehilfe         7                                                                                                                                                                             | 117<br>216<br>117<br>313<br>132<br>136<br>136<br>132<br>218                               |
|   | BULLDOG® Einpressdübel C1 - C3 - C5 Bulldog® zweiseitige Scheibendübel 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 323                                                                                       |

|   | Produkte Kapitel C1xxS Bulldog zweiseitige Scheibendübel rostfrei 10 C2 – C4 Bulldog® einseitige Scheibendübel 13 C2xxS Bulldog® einseitige Scheibendübel rostfrei 10 | 268<br>322                             |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| D | Dachlattenverbinder DLV Dachlattenverbinder                                                                                                                           | 152                                    |
|   | Design Series 12                                                                                                                                                      | 292                                    |
| Ε | Elementverbinder ICST Elementverbinder                                                                                                                                | 138                                    |
| F | EWP-FormteileIUSE EWP Formteile2LSSU EWP Formteile2                                                                                                                   | 114<br>112                             |
|   | Firstlattenhalter TOL Firstlattenhalter                                                                                                                               | 143                                    |
|   | Flachverbinder FLV Flachverbinder                                                                                                                                     | 298                                    |
| G | GEKA C10 GEKA zweiseitige Scheibendübel mit Dornen 13 C11 GEKA einseitige Scheibendübel mit Dornen 13                                                                 |                                        |
|   | Gerberverbinder6GERB Gerberverbinder6GERG Gerberverbinder6GERW Gerberverbinder6GERWxxS Gerberverbinder rostfrei10                                                     | 200<br>202<br>204<br>267               |
|   | Geschossverbinder11SCMF35/B Geschossverbinder11SCMF55/B Geschossverbinder11                                                                                           | 284<br>286                             |
| Н | HE-Anker<br>HE Profilanker11                                                                                                                                          | 246                                    |
|   | Hirnholzverbinder ATFN Hirnholzverbinder                                                                                                                              | 136<br>134<br>134<br>132               |
| K | Kammnägel / Nägel       13         CNA Kammnägel                                                                                                                      | 318<br>269<br>318<br>319               |
|   | Knaggen KNAG Winkelverbinder                                                                                                                                          | 74                                     |
|   | KIT KIT FIX Pfostenanker inkl. Zubehör                                                                                                                                | 310                                    |
|   | KOLLIBRODD® LadungssicherungKOLC Ladungssicherung13KOLV1 Ladungssicherung50 lose13                                                                                    | 328<br>328                             |
|   | Konsolenwinkel CF-R Konsolwinkel                                                                                                                                      | 300                                    |
|   | <b>Kragarmverbinder MAXIMUS™</b> Kragarmbeschlag1                                                                                                                     | 76                                     |
| L | Lochbänder       4         BAN Lochbänder                                                                                                                             | 157<br>266<br>158<br>296<br>158<br>296 |
|   | NP Lochbleche                                                                                                                                                         | 182<br>267                             |

### Inhaltsverzeichnis Produkte



|     | Produkte Kapite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | el Seite |       | Produkte                             | Kapitel Seite |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------------------------------------|---------------|
| М   | Maueranschlussschiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       | Stuhlwinkel (Winkelverbinder)        | ·             |
|     | C2KS Maueranschlussschienen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 249    |       | EC Stuhlwinkel                       | 12 299        |
| NI. | Nogolalotton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       | Stützenfüße                          |               |
| N   | Nagelplatten MP Nagelplatten1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 201    |       | APB100/150Z Stützenfüße              | 7 213         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 001    |       | CMR Stützenfüße                      |               |
| Р   | Pfettenanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       | CMS Stützenfüße                      |               |
|     | PFE Pfettenanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       | CPB40 Stützenfüße                    |               |
|     | PFU Pfettenanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 150    |       | CPS40 Stützenfüße                    |               |
|     | Pfostenanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       | PB3B Stützenfüße                     |               |
|     | PPH Pfostenanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 302    |       | PB3C Stützenfüße                     |               |
|     | PPHB Pfostenanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 302    |       | PGS24 Stützenfüße                    |               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       | PGS24 Stützenfüße                    |               |
|     | Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 000    |       | PIG Stützenfüße                      |               |
|     | JGB18G Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       | PILG Stützenfüße                     | 7 223         |
|     | PA Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       | PIS70G Stützenfüße                   |               |
|     | PBE60G Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       | PISBMAXIG Stützenfüße                |               |
|     | PBL4540 Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       | PISBxxG Stützenfüße                  |               |
|     | PBR24/50G Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       | PISMAXIG Stützenfüße                 |               |
|     | PCN Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       | PJIBG Stützenfüße                    |               |
|     | PCNS40G Plosterinalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       | PJISG Stützenfüße                    |               |
|     | PCR24/50G Pfostenhalter 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       | PJPBG Stützenfüße                    | 7 226         |
|     | PDL Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       | PJPSG Stützenfüße                    | 7 226         |
|     | PDS60G Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       | PLBxxG Stützenfüße                   | 7 230         |
|     | PPU Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       | PLSxxG Stützenfüße                   | 7 230         |
|     | PT30G Pfostenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       | PLxxG Stützenfüße                    | 7 229         |
|     | PTB48G Pfostenhalter 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       | PP18/24xy Stützenfüße                | 7 231         |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 000    |       | PP80G Stützenfüße                    | 7 234         |
|     | Profilanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |       | PPA Stützenfüße                      | 7 236         |
|     | PROFA Profilanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 247    |       | PPBxxG Stützenfüße                   | 7 237         |
|     | Rundholzverbinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       | PPCxx/yyBZ Stützenfüße               | 7 232         |
|     | EBR Rundholzverbinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 299    |       | PPCxx/yyBZ Stützenfüße               |               |
|     | RFC Rundholzverbinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       | PPDxxG Stützenfüße                   | 7 238         |
| _   | O de alla la constanta de la c |          |       | PPDxxG Stützenfüße                   | 7 239         |
| S   | Schalldämmlager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 01     |       | PPL80G Stützenfüße                   | 7 235         |
|     | SIT Schalldämmlager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       | PPRC Stützenfüße                     | 7 236         |
|     | SITW Schallschutz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 35     |       | PPS80G Stützenfüße                   |               |
|     | Schrauben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       | PPWSxxZ Gefalteter Stützenfuß        | 12 306        |
|     | CSA Verbinderschrauben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |       | PU Stützenfüße                       | 7 240         |
|     | CSAxxS Verbinderschrauben rostfrei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 269    |       | PUA Stützenfüße                      | 7 241         |
|     | FTETL Senkkopfschrauben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       | PUA/B Stützenfüße                    |               |
|     | SDS Sonderschrauben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 32     |       | PVDBxxG Stützenfüße                  |               |
|     | Schrägverschraubung ZYKLOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |       | PVDxxG Stützenfüße                   |               |
|     | <b>ZYKT</b> ZYKLOP <sup>TM</sup> -Verbinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 326    |       | PVIBG Stützenfüße                    |               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       | PVIG Stützenfüße                     | 7 242         |
|     | Spanngeräte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 404    | Т     | T-Profil                             |               |
|     | BANSTR Spanngeräte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       | TALU3000 T-Profile Alu               | 2 129         |
|     | BANSTR4 Spanngeräte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | - 11  | Universalverbinder                   |               |
|     | BNSP Spanngeräte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | U     | UNI Universalverbinder               | 0 14          |
|     | BPST Spanngeräte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |       | ON Onliversalverbillider             | 3 140         |
|     | BF Clips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 100    |       | U-Scheiben                           |               |
|     | Sparrenfußverbinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       | USxx Unterlegscheiben                | 13 328        |
|     | SF Sparrenfußverbinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | W     | Windrispenbänder                     |               |
|     | SH Sparrenfußverbinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 192    | • • • | BAN Windrispenband                   | 4 160         |
|     | Sparrenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       | BAN Windrispenband rostfrei          |               |
|     | SHB Sparrenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 194    |       | ·                                    |               |
|     | SHH Sparrenhalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 194    |       | Windverbandanschlüsse                | 4 47/         |
|     | Sporroppigol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |       | BNF BandanschlüsseBNG Bandanschlüsse |               |
|     | Sparrennägel SN Sparrennägel 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 210    |       | BNK Bandanschlüsse                   |               |
|     | Sin Sparrermager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 319    |       | BNKK Bandanschlüsse                  |               |
|     | Sparrenpfettenanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       | BNW Windverbandanschlüsse            |               |
|     | SPF Sparrenpfettenanker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |       | BNWA Windverbandanschlüsse           |               |
|     | SPF Sparrenpfettenanker rostfrei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 263    |       | BNWM Windverbandanschlüsse           |               |
|     | Stabdübel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |                                      | 4 1/8         |
|     | STD Stabdübel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 321    |       | Winkelverbinder                      |               |
|     | STDP Stabdübel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |       | AA Winkelverbinder                   |               |
|     | STDPxxS Stabdübel rostfrei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |       | AB Schubwinkel                       |               |
|     | STDxxS Stabdübel rostfrei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       | AB105 Winkelverbinder                |               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       | AB255HD Winkelverbinder              | 1 52          |

### Inhaltsverzeichnis Produkte



| Produkte Kapitel                | Seite |
|---------------------------------|-------|
| AB255SSH Winkelverbinder1       | 54    |
| AB45C Winkelverbinder1          | 72    |
| AB55365 Winkelverbinder         | 23    |
| AB70 Winkelverbinder 1          | 24    |
| AB90 Winkelverbinder 1          | 24    |
| ABAI105 Schallschutzwinkel1     | 32    |
| ABB Winkelverbinder1            | 36    |
| ABBxxs Winkelverbinder rostfrei | 260   |
| ABD Winkelverbinder1            | 30    |
| ABR Winkelverbinder1            | 38    |
| ABR170 Winkelverbinder1         | 44    |
| ABR220 Winkelverbinder1         | 44    |
| ABR255 Winkelverbinder1         | 48    |
| ABR255SO Winkelverbinder1       | 50    |
| ABRL Winkelverbinder1           | 38    |
| ABRxxS Winkelverbinder rostfrei | 259   |
| ABxxS Winkelverbinder rostfrei  | 258   |
| ABxxS Winkelverbinder rostfrei  | 260   |
| AC35350 Winkelverbinder 1       | 23    |
| ACR Winkelverbinder 1           | 38    |
| ACW155 Winkelverbinder1         | 56    |
| ACxxS Winkelverbinder rostfrei  | 260   |
| ADR Winkelverbinder1            | 58    |
| AE Winkelverbinder1             | 60    |
| AF90265 Winkelverbinder1        | 23    |
| AG Winkelverbinder1             | 64    |

| Produkte                        | Kapitel | Seite |
|---------------------------------|---------|-------|
| AJ Winkelverbinder              | 1       | 63    |
| AKR Winkelverbinder             | 1       | 66    |
| AKRxxS Winkelverbinder rostfrei | 10      | 261   |
| ANP Winkelverbinder             | 1       | 70    |
| ANPS Winkelverbinder            |         | 71    |
| ANPxxS Winkelverbinder rostfrei | 10      | 261   |
| AT Winkelverbinder              | 1       | 58    |
| BNV Schubwinkel                 | 1       | 28    |
| E20/3 Winkelverbinder           | 1       | 46    |
| E9/2,5 Winkelverbinder          | 1       | 46    |
| EBC Winkelverbinder             |         | 72    |
| EBR Winkelverbinder rostfrei    | 10      | 262   |
| EFIXR Montagewinkel             | 12      | 297   |
| FLVW Flachverbinderwinkel       | 12      | 287   |
| Flachwinkel 66L und 66T-form    | 12      | 298   |
| SC2P 2-teiliger Schubwinkel     | 1       | 27    |
| TA Winkelverbinder              | 1       | 73    |
| Zug- und Scherplatten           |         |       |
| NPB Zug- und Scherplatten       | 5       | 184   |
| Zuganker                        |         |       |
| AH Zuganker                     | 11      | 274   |
| HD Zuganker                     |         | 278   |
| HD2P Zuganker                   |         | 280   |
| LTT Zuganker                    |         | 273   |
| LII Zugarinoi                   | 1 1     | 210   |

Z





# Produktbezogene Ausschreibungstexte – planen mit Simpson Strong-Tie®

Wir möchten Sie gezielt bei Ihren Projekten unterstützen und stellen Ihnen neben Kompetenz und Service produktspezifische Ausschreibungstexte für Ihre Bau-Ausschreibung zum Download zur Verfügung.

Als zuverlässiger Partner ist es unser Anspruch, technisch immer auf dem neuesten Stand zu sein und Ihnen die bestmögliche Qualität und Sicherheit zu gewährleisten.

Laden Sie sich die Ausschreibungstexte, für die verschiedenen Produktbereiche auf ausschreiben.de herunter.

Sie haben die Möglichkeit über die Website AUSSCHREIBEN.DE die Texte in den unterschiedlichsten Formaten (Word, Excel, RTF, PDF, Text, GAEB XML, GAEB 90, DATANORM 5 und ÖNORM) auszuwählen sowie die verschiedenen Positionen als Schätz-LV oder Angebotsaufforderung zusammen zu führen und ausgeben zu lassen.

Sie haben Fragen? Wir sind gerne für Sie da.

+49 6032 8680-122 anwendungstechnik@strongtie.com

#### Ihre Vorteile:

- Nach Produktgruppen sortiert
- Professionell und praxisgerecht
- Integrierte Hyperlinks zur jeweiligen ETA & DoP
- Gesamtes Programm abgebildet



# Bleiben Sie informiert mit den Online-Medien von Simpson Strong-Tie®

Alle Mitarbeiter von Simpson Strong-Tie® machen es sich zur persönlichen Aufgabe Sie bestmöglich zu unterstützen. Wir haben den Anspruch, technisch auf dem neusten Stand zu sein und Sie optimal zu informieren damit Sie Ihr Ziel erreichen.

Zusätzlich zu unserem monatlichen Newsletter bieten wir Schulungen und Webinare zu den verschiedenen Sortimentsbereichen an.



Erhalten Sie Informationen zu unseren Produkten, Angeboten und Neuigkeiten aus erster Hand. Jetzt für den Simpson Strong-Tie® Newsletter anmelden und nichts mehr verpassen!
Sie können sich jederzeit selbstständig abmelden.



Das reicht Ihnen noch nicht? Melden Sie sich in unserem Verteiler für die Einladung zu konstenfreien Online-Seminaren an und erhalten Sie Fachwissen aus Theorie und Praxis rund um die Verbindungstechnik im Ingenieurholzbau.

Nähere Infos unter www.strongtie.de oder scannen Sie direkt den Code mit Ihrem Smartphone.

